Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato)

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Motta, Joyce Fagundes Gomes lattes
Orientador(a): Melo, Nath?lia Ramos de lattes
Banca de defesa: Melo, Nath?lia Ramos de, Moreira, Francys Kley Vieira, Silva, Otniel Freitas
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Ci?ncia e Tecnologia de Alimentos
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/6195
Resumo: Active packaging can contribute positively to the environment, being able to be produced from renewable sources, and offering consumers safe food, when activated by the incorporation of antimicrobial agents in the polymer matrix. Among these package, the films can be based on starches, which can still be modified and consequently obtain films with different characteristics and among the antimicrobial agents considered GRAS by the FDA and which can be used in food and consequently incorporated into the films, there is the cationic surfactant LAE (N?-lauroyl-L-arginine ethyl ester monohydrochloride, which presents a wide spectrum of performance. The aim of this study was, firstly, to study the properties of native (NS), cationic (CS) and anionic starches (AShc and ASs) about amylose and moisture content, granule morphology, paste properties and chemical structure (FT-IR) and later to produce films based on these starches incorporated with LAE. The films were produced by the casting method and characterized with thickness, solubility and swelling content, water vapor transmission rate (WVTR), mechanical and antimicrobial properties, chemical structure (FT-IR), surface (SEM) and optical properties (L*a*b* and opacity). Although the starches studied were obtained from different botanical sources and were modified, they did not show a difference in chemical structure and moisture content (p>0,05). However, differences were observed regarding the amylose content, granule morphology, and paste properties that may be associated not only with the botanical source, but also with the modification processes that the starches underwent. Regarding the formed films, the FT-IR did not detect differences between the chemical structures of films with and without LAE. The SEM detected the presence of some points that may be dirt or ?ghosts? and an increase in irregularities with the presence of LAE according to the methodology used. It was also observed that the films had different characteristics and the addition of LAE was responsible for promoting in most films an increase in thickness and in all films an increase in flexibility and a decrease in stiffness. In addition, LAE significantly increased the swelling content of AShc film and the solubility content of AShc and CS films. The ASs ? based film is highly soluble both with and without the insertion of the surfactant, which was also responsible for increasing the WVTR of all films, except for these ASs. As for the color, the films presented a clear aspect and few opaque and the LAE was responsible for decreasing (p<0.05) the clarity and increasing the opacity of the films based on NS and CS. Finally, LAE made the packaging active, inhibiting the development of the gram-positive bacteria Staphylococcus aureus (more sensitive), gram-negative Escherichia coli and the fungus Penicillium sp. Thus, these films have the potential to be used by the food packaging industry and since the four starches generated films with different characteristics, the application of these packages can be used for various food products. Also, the incorporation of LAE tends to prolong the validity of the packaged products.
id UFRRJ-1_7b923888a95e555b82e4bcd524cb4264
oai_identifier_str oai:localhost:jspui/6195
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Melo, Nath?lia Ramos de102.064.957-73http://lattes.cnpq.br/1836355123449583Vitorazi, Let?ciaMelo, Nath?lia Ramos deMoreira, Francys Kley VieiraSilva, Otniel Freitas116.983.586-44https://orcid.org/0000-0001-8591-7472http://lattes.cnpq.br/5373287724417477Motta, Joyce Fagundes Gomes2023-01-10T20:52:58Z2020-02-03MOTTA, Joyce Fagundes Gomes. Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato). 2020. 81 f. Disserta??o (Mestrado em Ci?ncia e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2020.https://tede.ufrrj.br/jspui/handle/jspui/6195Active packaging can contribute positively to the environment, being able to be produced from renewable sources, and offering consumers safe food, when activated by the incorporation of antimicrobial agents in the polymer matrix. Among these package, the films can be based on starches, which can still be modified and consequently obtain films with different characteristics and among the antimicrobial agents considered GRAS by the FDA and which can be used in food and consequently incorporated into the films, there is the cationic surfactant LAE (N?-lauroyl-L-arginine ethyl ester monohydrochloride, which presents a wide spectrum of performance. The aim of this study was, firstly, to study the properties of native (NS), cationic (CS) and anionic starches (AShc and ASs) about amylose and moisture content, granule morphology, paste properties and chemical structure (FT-IR) and later to produce films based on these starches incorporated with LAE. The films were produced by the casting method and characterized with thickness, solubility and swelling content, water vapor transmission rate (WVTR), mechanical and antimicrobial properties, chemical structure (FT-IR), surface (SEM) and optical properties (L*a*b* and opacity). Although the starches studied were obtained from different botanical sources and were modified, they did not show a difference in chemical structure and moisture content (p>0,05). However, differences were observed regarding the amylose content, granule morphology, and paste properties that may be associated not only with the botanical source, but also with the modification processes that the starches underwent. Regarding the formed films, the FT-IR did not detect differences between the chemical structures of films with and without LAE. The SEM detected the presence of some points that may be dirt or ?ghosts? and an increase in irregularities with the presence of LAE according to the methodology used. It was also observed that the films had different characteristics and the addition of LAE was responsible for promoting in most films an increase in thickness and in all films an increase in flexibility and a decrease in stiffness. In addition, LAE significantly increased the swelling content of AShc film and the solubility content of AShc and CS films. The ASs ? based film is highly soluble both with and without the insertion of the surfactant, which was also responsible for increasing the WVTR of all films, except for these ASs. As for the color, the films presented a clear aspect and few opaque and the LAE was responsible for decreasing (p<0.05) the clarity and increasing the opacity of the films based on NS and CS. Finally, LAE made the packaging active, inhibiting the development of the gram-positive bacteria Staphylococcus aureus (more sensitive), gram-negative Escherichia coli and the fungus Penicillium sp. Thus, these films have the potential to be used by the food packaging industry and since the four starches generated films with different characteristics, the application of these packages can be used for various food products. Also, the incorporation of LAE tends to prolong the validity of the packaged products.As embalagens ativas podem contribuir positivamente com o meio-ambiente podendo ser produzidas a partir de fontes renov?veis, e oferecer aos consumidores alimentos seguros, quando ativadas pela incorpora??o na matriz polim?rica de agentes antimicrobianos. Dentre estas embalagens, os filmes podem ter por base amidos, os quais ainda podem ser modificados e consequentemente obter filmes com caracter?sticas diferentes e dentre os agentes antimicrobianos considerados GRAS pela FDA e que podem ser usados em alimentos e consequentemente incorporados aos filmes, tem-se o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato), o qual apresenta um amplo espectro de a??o. Este trabalho teve como objetivo, primeiramente, estudar as propriedades de amidos nativo (AN), cati?nico (AC) e ani?nicos (AAhc e AAs) em rela??o ao teor de amilose, umidade, morfologia dos gr?nulos, propriedades de pasta e estrutura qu?mica (FT-IR) e posteriormente desenvolver filmes a base destes amidos incorporados com LAE. Os filmes foram produzidos pelo m?todo casting e caracterizados em rela??o ? espessura, teor de solubilidade e inchamento, taxa de permeabilidade ao vapor d??gua (TPVA), propriedades mec?nicas e antimicrobianas, estrutura qu?mica (FT-IR), superf?cie (MEV) e propriedades ?pticas (L*a*b* e opacidade). Apesar dos amidos estudados terem sido obtidos de diferentes fontes bot?nicas e terem sido modificados, eles n?o apresentaram diferen?a em rela??o ? estrutura qu?mica e teor de umidade (p>0,05). Contudo, foram observadas diferen?as em rela??o ao teor de amilose, morfologia dos gr?nulos e propriedades de pasta que podem estar associadas n?o somente ? fonte bot?nica, mas tamb?m aos processos de modifica??o que os amidos foram submetidos. Em se tratando dos filmes formados, o FT-IR n?o detectou diferen?as entre as estruturas qu?micas dos filmes com e sem LAE. O MEV detectou a presen?a de algumas part?culas que podem ser sujidades ou ?fantasmas? e aumento de irregularidades com a presen?a do LAE de acordo com a metodologia usada. Foi observado tamb?m que os filmes apresentaram caracter?sticas distintas e a adi??o do LAE foi respons?vel por promover na maioria dos filmes aumento de espessura e em todos os filmes aumento de flexibilidade e diminui??o da rigidez. Al?m disso, o LAE promoveu aumento significativo no teor de inchamento do filme AAhc e no teor de solubilidade dos filmes AAhc e AC. O filme a base de AAs ? altamente sol?vel tanto com quanto sem a inser??o do surfactante, o qual tamb?m foi respons?vel por aumentar a TPVA de todos os filmes, exceto deste AAs. Quanto ? colora??o, os filmes apresentaram aspecto claro e pouco opaco e o LAE foi respons?vel por diminuir (p<0,05) a claridade e aumentar a opacidade dos filmes a base de AN e AC. Por fim, o LAE tornou as embalagens ativas, inibindo o desenvolvimento da bact?ria gram-positiva Staphylococcus aureus (mais sens?vel), gram-negativa Escherichia coli e do fungo Penicillium sp. Desse modo, estes filmes t?m potencial para serem usados pela ind?stria de embalagens aliment?cias e como os 4 amidos geraram filmes com caracter?sticas diferentes, a aplica??o destas embalagens pode ser destinada ? diversos produtos aliment?cios, al?m disso, a incorpora??o do LAE, tende a prolongar a validade dos produtos acondicionados.Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-01-10T20:52:58Z No. of bitstreams: 1 2020 - Joyce Fagundes Gomes Motta.pdf: 1649867 bytes, checksum: efb6bea5e97d9f256035703874c328d8 (MD5)Made available in DSpace on 2023-01-10T20:52:58Z (GMT). No. of bitstreams: 1 2020 - Joyce Fagundes Gomes Motta.pdf: 1649867 bytes, checksum: efb6bea5e97d9f256035703874c328d8 (MD5) Previous issue date: 2020-02-03CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/71627/2020%20-%20Joyce%20Fagundes%20Gomes%20Motta.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Ci?ncia e Tecnologia de AlimentosUFRRJBrasilInstituto de TecnologiaABDELGHANY, A. M. et al. Combined DFT/FTIR structural studies of monodispersed PVP/Gold and silver nano particles. Journal of Alloys and Compounds, v. 646, p. 326? 332, 2015. ABRE. Estudo macroecon?mico da embalagem ABRE/FGV. Dispon?vel em: <https://www.abre.org.br/dados-do-setor/ano2017/>. Acesso em: 13 fev. 2020. AHVENAINEN, R. Novel food packaging techniques. 1 ed. Boca Raton: CRC Press, 2003. 590 p. AI, Y.; JANE, J. Gelatinization and rheological properties of starch. Starch?St?rke, v. 67, n. 3?4, p. 213?224, 2015. AL-NEMR, T. M. et al. Influence of nisin and lauryl arginine ester against some foodborne pathogens in recombined feta and processed spread cheese. Journal of Food Safety, v. 36, n. 2, p. 172?179, 2016. ALMEIDA, D. M. et al. Propriedades f?sicas, qu?micas e de barreira em filme formados por blenda de celulose bacteriana e f?cula de batata. Pol?meros: Ci?ncia e Tecnologia, v. 23, n. 4, p. 538?546, 2013. AMINZARE, M. et al. Antibacterial activity of corn starch films incorporated with Zataria multiflora and Bonium persicum essential oils. Annual Research and Review in Biology, v. 19, n. 1, 2017. ANDRADE, I. H. P. et al. Documentos de patentes relacionados ? produ??o de filmes biodegrad?veis comest?veis. Cadernos de Prospec??o, v. 11, n. 1, p. 183-197, 2018. ANTONIO, C. B. Estudo termodin?mico de associa??o de surfatantes zwitteri?nicos e sua intera??o com pol?meros atrav?s de titula??o calorim?trica. 2011. 124 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Qu?mica, Universidade de Campinas, Campinas. ANVISA. M?dulo 5 - Teste de Sensibilidade aos Antimicrobianos. 2008. Dispon?vel em: < http://www.anvisa.gov.br/servicosaude/controle/rede_rm/cursos/boas_praticas/modulo5 /interpretacao.htm>. Acesso em: 09 dez. 2019. APICELLA, A. et al. Antimicrobial biodegradable coatings based on LAE for food packaging applications. AIP Conference Proceedings, v. 1981, 2018. ASKER, D.; WEISS, J.; MCCLEMENTS, D. J. Analysis of the interactions of a cationic surfactant (Lauric arginate) with an anionic biopolymer (Pectin): Isothermal titration calorimetry, light scattering, and microelectrophoresis. Langmuir, v. 25, n. 1, p. 116? 122, 2009. ASKER, D.; WEISS, J.; MCCLEMENTS, D. J. Formation and stabilization of antimicrobial delivery systems based on electrostatic complexes of cationic-non-ionic mixed micelles and anionic polysaccharides. Journal of Agricultural and Food Chemistry, v. 59, n. 3, p. 1041?1049, 2011. ASTM - American Society for Testing Materials. ASTM D 882-12 - Standard Test Method for Tensile Properties of Thin Plastic Sheeting. In: Annual Book of ASTM, 2012. ASTM - American Society for Testing Materials. ASTM D 1746-15 - Standard Test Method for Transparency of Plastic Sheeting. In: Annual Book of ASTM, 2015. AWOKOYA, K. N. et al. Pasting, morphological and functional properties of breadfruit (Artocarpus altilis) starch cross-linked with ethylene glycol dimethacrylate. African Journal of Food Science and Technology, v. 9, n. 1, p. 8-18, 2018. BABU, A. S. et al. A comparative study on dual modification of banana (Musa paradisiaca) starch by microwave irradiation and cross-linking. Journal of Food Measurement and Characterization, v. 12, n. 3, p. 2209?2217, 2018. BANDEIRA, E. I.; MARQUES, P. T. S?ntese e caracteriza??o de micropart?culas de amido sol?vel e f?cula de mandioca reticuladas com tripolifosfato de s?dio. Blucher Chemical Engineering Proceedings, v. 2, n. 1, p. 105?113, 2015. BASIAK, E.; LENART, A.; DEBEAUFORT, F. Effect of starch type on the physicochemical properties of edible films. International Journal of Biological Macromolecules, v. 98, p. 348?356, 2017. BASIAK, E.; LENART, A.; DEBEAUFORT, F. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, v. 10, n. 4, p. 1-18, 2018. BECERRIL, R. et al. Antimicrobial activity of Lauroyl Arginate Ethyl (LAE), against selected food-borne bacteria. Food Control, v. 32, n. 2, p. 404?408, 2013. BERNARDO, A. S. Di; BERNARDO, L. Di. Uso de amido de mandioca cationico como auxiliar de flocula??o. In: Congreso Interamericano de Ingenier?a Sanitaria y Ambiental, 27., 2000, Porto Alegre. Anais...Rio de Janeiro: ABES, p. 1-11. BERSANETI, G. T. et al. Evaluation of the prebiotic activities of edible starch films with the addition of nystose from Bacillus subtilis natto. LWT, v. 116, p.1-6, 2019. BERTUZZI, M. A.; ARMADA, M.; GOTTIFREDI, J. C. Physicochemical characterization of starch based films. Journal of Food Engineering, v. 82, n. 1, p. 17? 25, 2007. BIDUSKI, B. et al. Physicochemical properties of nanocomposite films made from sorghum-oxidized starch and nanoclay. Starch/Staerke, v. 69, n. 11?12, p. 1-27, 2017. BONNAUD, M.; WEISS, J.; MCCLEMENTS, D. J. Interaction of a food-grade cationic surfactant (Lauric Arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan). Journal of Agricultural and Food Chemistry, v. 58, n. 17, p. 9770?9777, 2010. BRAGA, L. R.; PERES, L. Novas tend?ncias em embalagens para alimentos: revis?o. Boletim Centro de Pesquisa de Processamento de Alimentos, v. 28, p. 69-84, 2010. BRAGA, L. R.; SILVA, F. M. Embalagens ativas: uma nova abordagem para embalagens aliment?cias. Brazilian Journal of Food Research, v. 8, n. 4, p. 170-186, 2017. BUSTILLOS-RODR?GUEZ, J. C. et al. Physicochemical, Thermal and Rheological Properties of Native and Oxidized Starch from Corn Landraces and Hybrids. Food Biophysics, v. 14, n. 2, p. 182?192, 2019. CAETANO, K. et al. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life, v. 16, p. 138?147, 2018. CALVINI, P.; GORASSINI, A. FTIR?deconvolution spectra of paper documents. Restaurator, v. 23, n. 1, p. 48?66, 2002. CANEVAROLO JR, S. V. Ci?ncia dos pol?meros - Um texto b?sico para tecn?logos e engenheiros. 1 ed. S?o Paulo: Artliber, 2002. 280 p. DOCSITY. O estado s?lido em pol?meros. 2013. Dispon?vel em: <https://www.docsity.com/pt/estado-solido-em-polimeros-apostilas-processos-depolimerizacao/ 332728/>. Acesso em 06 jan. 2020. CAETANO, K. et al. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life, v. 16, p. 138?147, 2018. CARDOSO, T. Avalia??o da Spirulina platensis na produ??o de biofilmes de derivados de mandioca e gelatina com aplica??o em pimenta cambuci (Capsicum sp.). 2017. 106 f. Disserta??o (Mestrado em Ci?ncia e Tecnologia de Alimentos) - Programa de P?s-Gradua??o em Ci?ncia e Tecnologia de Alimentos, Universidade Estadual de Ponta Grossa, Ponta Grossa. CARVALHO, D. de M. et al. Filme ativo de acetato de celulose incorporado com nanosuspens?o de curcumina. Pol?meros, v. 27, p. 70?76, 2017. CHANG, S.-Y.; LAI, H.-M. Effect of trisodium citrate on swelling property and structure of cationic starch thin film. Food Hydrocolloids, v. 56, p. 254?265, 2016. CHEN, P. et al. Phase transition of starch granules observed by microscope under shearless and shear conditions. Carbohydrate Polymers, v. 68, n. 3, p. 495?501, 2007. CHEN, Q. et al. Recent progress in chemical modification of starch and its applications. RSC Advances, v. 5, n. 83, p. 67459?67474, 2015. CHENG, J. et al. An active packaging film based on yam starch with eugenol and its application for pork preservation. Food Hydrocolloids, v. 96, p. 546?554, 2019. CORISECTELMO. Espa?o de cor Lab. 2011. Dispon?vel em: <http://corisectelmo.blogspot.com/2011/01/aula-21-espaco-de-cor-lab.html>. Acesso em: 23 Jan. 2020. DALTIN, D. Tensoativos: qu?mica, propriedades e aplica??es. 1 ed. S?o Paulo: Blucher, 2011. 330 p. DAYRIT, F. M. The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists? Society, v. 92, n. 1, p. 1?15, 2015. DEMIATE, I. M. et al. Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydrate Polymers, v. 42, n. 2, p. 149?158, 2000. DIAS-MARTINS, A. M. et al. Impacts of ohmic heating on decorticated and whole pearl millet grains compared to open-pan cooking. Journal of cereal science, v. 85, p. 120? 129, 2019. DIAS, A. R. G. et al. Pasting, expansion and textural properties of fermented cassava starch oxidised with sodium hypochlorite. Carbohydrate Polymers, v. 84, n. 1, p. 268? 275, 2011. DOBRUCKA, R.; PRZEKOP, R. New perspectives in active and intelligent food packaging. Journal of Food Processing and Preservation, v. 43, n. 11, p. 1-9, 2019. DOMENE-L?PEZ, D. et al. Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers, v. 11, n. 7, p. 1-7, 2019. EFSA. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food on a request from the commission related to an application on the use of ethyl lauroyl arginate as a food additive question number EFSA-Q-2006-035. 2007. Dispon?vel em: <https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2007.511/>. Acesso em 09 Dez 2019. EL HALAL, S. L. M. et al. Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, v. 133, p. 644?653, 2015. EL HALAL, S. L. M. et al. Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley. Journal of the Science of Food and Agriculture, v. 97, n. 2, p. 411?419, 2017. EVANGELHO, J. A. et al. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydrate Polymers, v. 222, p. 114981, 2019. FAIT, M. E. et al. Prodcci?n de un agente antimicrobiano con potencial actividad tensioativa mediante el empleo de tecnologias amigables con el medio ambiente. AUGMDOMUS, v. 4, p. 49-61, 2012. FAKHOURI, F. M. et al. Filmes e coberturas comest?veis compostas ? base de amidos nativose gelatina na conserva??o e aceita??o sensorial de uvas Crimson. Ci?ncia e Tecnologia de Alimentos, v. 27, n. 2, p. 369?375, 2007. FALGUERA, V. et al. Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, v. 22, p. 292-303, 2011. FANGFANG, Z. et al. Effects of virgin coconut oil on the physicochemical, morphological and antibacterial properties of potato starch-based biodegradable films. International Journal of Food Science & Technology, v. 55, n. 1, p. 192?200, 2020. FELIPE, L. de O.; DIAS, S. de C. Surfactantes sint?ticos e biossurfactantes: vantagens e desvantagens. Qu?mica nova escola, v. 39, n. 3, p. 228?236, 2017. FENNEMA, O. R.; DAMODARAN, S.; PARKIN, K. L. Qu?mica de alimentos de Fennema. 4 ed. Porto Alegre: Artmed, 2010. 900 p. FONSECA, L. M. et al. Fabrication and Characterization of Native and Oxidized Potato Starch Biodegradable Films. Food Biophysics, v. 13, n. 2, p. 163?174, 2018. GAIKWAD, K. K. et al. Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. Journal of Food Measurement and Characterization, v. 11, n. 4, p. 1706?1716, 2017. GA?KOWSKA, D.; JUSZCZAK, L. Effects of amino acids on gelatinization, pasting and rheological properties of modified potato starches. Food Hydrocolloids, v. 92, p. 143?154, 2019. GALLOTO, M. J.; GUARDA, A.; DICASTILLO, C. L. D. Antimicrobial active polymers in food packaging. In: CIRILLO, G.; SPIZZIRRI, U. G.; IEMMA, F. Functional Polymers in Food Science: From Technology to Biology. Beverly: Scrivener Publishing, 2015. c. 10. GAMARRA-MONTES, A. et al. Antibacterial films made of ionic complexes of Poly(?- glutamic acid) and ethyl lauroyl arginate. Polymers, v. 10, n. 1, p. 1-14, 2017. GAMARRA, A. et al. Ionic coupling of hyaluronic acid with ethyl N-lauroyl l-arginate (LAE): Structure, properties and biocide activity of complexes. Carbohydrate polymers, v. 197, p. 109?116, 2018. GE, X. et al. Improved mechanical and barrier properties of starch film with reduced graphene oxide modified by SDBS. Journal of Applied Polymer Science, v. 134, n. 22, p. 1-8, 2017. GOESAERT, H. et al. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in food science & technology, v. 16, n. 1?3, p. 12? 30, 2005. GON?ALVES, S. M. Caracteriza??o das propriedades funcionais de filmes ativos antimicrobianos aditivados com ?leos essenciais e plastificante. 2016. 84 f. Disserta??o (Mestrado em Ci?ncia e Tecnologia de Alimentos) - Programa de P?sgradua??o em Ci?ncia e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Serop?dica. GON?ALVES, S. M. et al. Structure and functional properties of cellulose acetate films incorporated with glycerol. Carbohydrate polymers, v. 209, p. 190?197, 2019a. GON?ALVES, S. S. et al. Efeito do glicerol nas propriedades mec?nicas de filmes a base de quitosana. DESAFIOS-Revista Interdisciplinar Da Universidade Federal Do Tocantins, v. 6, n. Especial, p. 110?117, 2019b. GONTARD, N. et al. Food packaging applications of biopolymer?based films. In: PLACKETT, D. Biopolymers?New Materials for Sustainable Films and Coatings. 1 ed. New Jersey: Wiley, 2011. p. 211?232. GUIMAR?ES, M. et al. High moisture strength of cassava starch/polyvinyl alcoholcompatible blends for the packaging and agricultural sectors. Journal of Polymer Research, v. 22, n. 10, p. 1-18, 2015. GUO, M.; YADAV, M. P.; JIN, T. Z. Antimicrobial edible coatings and films from microemulsions and their food applications. International Journal of Food Microbiology, v. 263, p. 9-16, 2017. GUZM?N, E. et al. Polymer?surfactant systems in bulk and at fluid interfaces. Advances in colloid and interface science, v. 233, p. 38?64, 2016. HADIAN, M. et al. Encapsulation of Rosmarinus officinalis essential oils chitosanbenzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. LWT - Food Science and Technology, v. 84, p. 394-401, 2017. HAGHIGHI, H. et al. Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, v. 19, p. 31?39, 2019. HAGHIGHI, H. et al. Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocolloids, v. 100, n. 105419, p. 1-35, 2020. HAN, H. et al. Insight on the changes of cassava and potato starch granules during gelatinization. International Journal of Biological Macromolecules, v. 126, p. 37?43, 2019. HAN, J. H. Innovations in Food Packaging. 1. ed. London: Academic Press, 2005. 503 p. HARI, P. K.; GARG, S.; GARG, S. K. Gelatinization of starch and modified starch. Starch?St?rke, v. 41, n. 3, p. 88?91, 1989. HASHEMI, S. M. B.; MOUSAVI KHANEGHAH, A. Characterization of novel basil59 seed gum active edible films and coatings containing oregano essential oil. Progress in Organic Coatings, v. 110, p. 35?41, 2017. HE, H. et al. Improved stability and controlled release of CLA with spray-dried microcapsules of OSA-modified starch and xanthan gum. Carbohydrate Polymers, v. 147, p. 243?250, 2016. HENRIQUE, C. M.; CEREDA, M. P.; SARMENTO, S. B. S. Caracter?sticas f?sicas de filmes biodegrad?veis produzidos a partir de amidos modificados de mandioca. Ci?ncia e Tecnologia de Alimentos, v. 28, n. 1, p. 231?240, 2008. HERNANDEZ, D.; CARDELL, E.; ZARATE, V. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin?like substance produced by Lactobacillus plantarum TF711. Journal of applied microbiology, v. 99, n. 1, p. 77?84, 2005. HIGUERAS, L. et al. Development of a novel antimicrobial film based on chitosan with LAE (ethyl-N?-dodecanoyl-l-arginate) and its application to fresh chicken. International Journal of Food Microbiology, v. 165, n. 3, p. 339?345, 2013. HOOVER, R. et al. Composition, molecular structure, properties, and modification of pulse starches: A review. Food research international, v. 43, n. 2, p. 399?413, 2010. HORIMOTO, L. K.; CABELLO, C. Par?metros para a produ??o de amidos cati?nicos de f?cula de mandioca e de batata-doce. Revista Ra?zes e Amidos Tropicais, v. 1, n. 1, p. 69?75, 2005. HORNUNG, P. S. et al. Investigation of the photo-oxidation of cassava starch granules. Journal of Thermal Analysis and Calorimetry, v. 123, n. 3, p. 2129?2137, 2016. IMRAN, M. et al. Synthesis of highly stable ?-Fe 2 O 3 ferrofluid dispersed in liquid paraffin, motor oil and sunflower oil for heat transfer applications. RSC advances, v. 8, n. 25, p. 13970?13975, 2018. INSTITUTO ADOLFO LUTZ. M?todos f?sico-qu?micos para an?lise de alimentos. 4 ed. S?o Paulo: Instituto Adolfo Lutz, 2008. 1020 p. JANJARASSKUL, T.; SUPPAKUL, P. Active and intelligent packaging: the indication of quality and safety. Food Science and Nutrition, v. 58, n. 5, p. 808-831, 2017. JANSEN, S. et al. Analysis of nitrite and nitrate in the corned beef and smoked beef by Using Visible Spectrophotometry method. In: IOP Conference Series: Earth and Environmental Science, 1, Anais...IOP Publishing, 2018. JAVADIAN, S.; KAKEMAM, J. Intermicellar interaction in surfactant solutions; a review study. Journal of Molecular Liquids, v. 242, p. 115?128, 2017. JIM?NEZ, A. et al. Edible and biodegradable starch films: a review. Food and Bioprocess Technology, v. 5, n. 6, p. 2058?2076, 2012. KAHVAND, F.; FASIHI, M. Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. International Journal of Biological Macromolecules, v. 140, p. 775-781, 2019. KAPPES, M. C. et al. Estudo das propriedades de pasta de diferentes gen?tipos de cevada. In: XXV Congresso Brasileiro de Ci?ncia e Tecnologia de Alimentos, 25., 2016, Gramado. Anais...Gramado: sbCTA, 2016. p. 1-6. KASHIRI, M. et al. Novel antimicrobial zein film for controlled release of lauroyl arginate (LAE). Food Hydrocolloids, v. 61, p. 547?554, 2016. KAUR, L.; SINGH, J. Starch: Modified Starches. In: CABALLERO, B.; FINGLAS, P. M.; TOLDR?, F. B. T.-E. OF F. AND H. Encyclopedia of Food and Health. London: Academic Press, 2016. p. 152?159. KAUR, M.; BHULLAR, G. K. Partial Characterization of Tamarind (Tamarindus indica L.) Kernel Starch Oxidized at Different Levels of Sodium Hypochlorite. International Journal of Food Properties, v. 19, n. 3, p. 605?617, 2016. KAUR, S. et al. Diversity in properties of seed and flour of kidney bean germplasm. Food Chemistry, v. 117, n. 2, p. 282?289, 2009. KAVOOSI, G.; DADFAR, S. M. M.; PURFARD, A. M. Mechanical, Physical, Antioxidant, and Antimicrobial Properties of Gelatin Films Incorporated with Thymol for Potential Use as Nano Wound Dressing. Journal of Food Science, v. 78, n. 2, p. 244? 250, 2013. KHANEGHAH, A. M.; HASHEMI, S. M. B.; LIMBO, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: na overview of approaches and interactions. Food and Bioproducts Processing, v. 111, p. 1-19, 2018. KONITA MINOLTA. Entendendo o espa?o de Cor L*a*b*. 2019. Dispon?vel em: < http://sensing.konicaminolta.com.br/2013/11/entendendo-o-espaco-de-cor-lab/>. Acesso em 09 dez. 2019. KR?LIKOWSKA, K. et al. Relationship between sorption characteristic and selected functional properties of chemically modified waxy maize starches. Journal of Food Processing and Preservation, v. 43, p. 1-11, 2019. KUAKPETOON, D.; WANG, Y. Characterization of different starches oxidized by hypochlorite. Starch?St?rke, v. 53, n. 5, p. 211?218, 2001. KUO, W.-Y.; LAI, H.-M. Changes of property and morphology of cationic corn starches. Carbohydrate Polymers, v. 69, n. 3, p. 544?553, 2007. LA FUENTE, C. I. A. et al. Ozonation of cassava starch to produce biodegradable films. International Journal of Biological Macromolecules, v. 141, p. 713?720, 2019. LANDIM, A. P. M. et al. Sustentabilidade quanto ?s embalagens de alimentos no Brasil. Pol?meros, v. 26, p. 82-92, 2016. LAROTONDA, F. D. S. Desenvolvimento de biofilmes a partir da f?cula de mandioca. 2002. 78 f. Disserta??o (Mestrado em Engenharia de Alimentos) - Curso de P?s-Gradua??o em Engenharia de Alimentos, Universidade Federal de Santa Catarina. LAWAL, O. S. Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food chemistry, v. 87, n. 2, p. 205?218, 2004. LAWAL, O. S. et al. Oxidized and acid thinned starch derivatives of hybrid maize: functional characteristics, wide-angle X-ray diffractometry and thermal properties. International Journal of Biological Macromolecules, v. 35, n. 1?2, p. 71?79, 2005. LAZZAROTTO, S. R. da S. et al. Induced effects by oxidation with potassium permanganate on the thermal, morphological, colorimetric and pasting properties of corn starch. Ukrainian Food Journal, v. 6, n. 2, 197-210, 2017. LI, Z.; GALLUS, L. Surface configuration of sorbed hexadecyltrimethylammonium on kaolinite as indicated by surfactant and counterion sorption, cation desorption, and FTIR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 264, n. 1?3, p. 61?67, 2005. LIU, R. et al. Studies on best dose of X-ray for Hep-2 cells by using FTIR, UV?vis absorption spectroscopy and flow cytometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 73, n. 4, p. 601?607, 2009. LOEFFLER, M. et al. Electrostatic interactions of cationic lauric arginate with anionic polysaccharides affect antimicrobial activity against spoilage yeasts. Journal of applied microbiology, v. 117, n. 1, p. 28?39, 2014. LOPEZ-SILVA, M. et al. Effect of amylose content in morphological, functional and emulsification properties of OSA modified corn starch. Food Hydrocolloids, v. 97, p. 1- 8, 2019. LOURDIN, D. et al. Crystalline structure in starch. In: NAKAMURA, Y. Starch: Metabolism and structure. Japan: Springer, 2015. c. 3. LOUREIRO, A. C. et al. Estudo em alimentos cotidianos: Pesquisa de polissacar?deos atrav?s da rea??o com iodo. Brazilian Journal of Development, v. 5, n. 11, p. 24243- 24253, 2019. LUCAS, E. F.; SOARES, B. G.; MONTEIRO, E. E. C. Caracteriza??o de pol?meros: determina??o de peso molecular e an?lise t?rmica. 1 ed. Rio de Janero: E-papers Servi?os Editoriais, 2001. 366 p. LUCHESE, C. L. et al. Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloids, v. 82, p. 209? 218, 2018. LUCHESE, C. L. Desenvolvimento de embalagens biodegrad?veis a partir de amido contendo subprodutos provenientes do processamento de alimentos. 2018. 226 f. Tese (Doutorado em Engenharia Qu?mica) - Departamento de Engenharia Qu?mica, Universidade Federal do Rio Grande do Sul, Porto Alegre. MA, Q.; ZHANG, Y.; ZHONG, Q. Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT - Food Science and Technology, v. 65, p. 173?179, 2016. MACHADO, T. F. et al. Atividade antimicrobiana do ?leo essencial de manjeric?o contra pat?genos e deterioradores de alimentos. Embrapa Agroind?stria Tropical-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E), v. 67, n. 1679-6543, p. 1-16, 2012. MAJZOOBI, M. et al. Effects of L-Cysteine on some characteristics of wheat starch. Food chemistry, v. 124, n. 3, p. 795?800, 2011. MALANOVIC, N.; LOHNER, K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)- Biomembranes, v. 1858, n. 5, p. 936?946, 2016. MALHOTRA, B.; KESHWANI, A.; KHARKWAL, H. Antimicrobial food packaging: potential and pitfalls. Frontiers in Microbiology, v. 6, n. 611, p. 1-9, 2015. MALI, S.; GROSSMANN, M. V. E.; YAMASHITA, F. Filmes de amido: Produ??o, propriedades e potencial de utiliza??o. Semina:Ciencias Agrarias, v. 31, n. 1, p. 137? 156, 2010. MALLAKPOUR, S.; EZHIEH, A. N. Effect of Starch- Valine Nanocomposite on the Optical, Morphological, Thermal, and Adsorption Properties of Chitosan. Journal of Polymers and the Environment, v. 25, n. 3, p. 875?883, 2017. MANIGLIA, B. C. Elabora??o de filmes biodegrad?veis a partir do res?duo da extra??o do pigmento de C?rcuma. 2012. 144 f. Disserta??o (Mestrado em Ci?ncias) - Faculdade de Filosofia, Ci?ncia e Letras, Universidade de S?o Paulo, Ribeir?o Preto. MANIGLIA, B. C. et al. Production of active cassava starch films; effect of adding a biosurfactant or synthetic surfactant. Reactive and Functional Polymers, v. 144, p. 1- 33, 2019. MANO, E. B.; MENDES, L. C. Introdu??o a Pol?meros. 2 ed. S?o Paulo: Blucher, 1999. 208 p. MAO, J. et al. A novel gemini viscoelastic surfactant (VES) for fracturing fluids with good temperature stability. RSC Advances, v. 6, n. 91, p. 88426?88432, 2016. MARENGO, V. A.; VERCELHESE, A. E. S.; MALI, S. Comp?sitos biodegrad?veis de amido de mandioca e res?duos da agroind?stria. Qu?mica Nova, v. 36, n. 5, 2013. MART?NEZ, C.; CUEVAS, F. Evaluaci?n de la calidad culinaria y molinera del arroz. 3 ed. Cali: CIAT, 1989. 73 p. MART?NEZ, M. L. et al. Walnut (Juglans regia L.): genetic resources, chemistry, byproducts. Journal of the Science of Food and Agriculture, v. 90, n. 12, p. 1959?1967, 2010 MASINA, N. et al. A review of the chemical modification techniques of starch. Carbohydrate polymers, v. 157, p. 1226?1236, 2017. MLALILA, N. et al. Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends in Food Science & Technology, v. 74, p. 1?11, 2018. MORENO, O. et al. Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydrate Polymers, v. 178, p. 147?158, 2017. MUCILLO, R. C. S. T. Caracteriza??o e avalia??o de amido nativo e modificado de pinh?o mediante provas funcionais e t?rmicas. 2009. 156 f. Tese (Doutorado em Engenharia Qu?mica) - Departamento de Engenharia Qu?mica, Universidade Federal do Rio Grande do Sul, Porto Alegre. MURIEL-GALET, V. et al. Characterization of ethylene-vinyl alcohol copolymer containing lauril arginate (LAE) as material for active antimicrobial food packaging. Food packaging and shelf life, v. 1, n. 1, p. 10?18, 2014. MURIEL-GALET, V. et al. Ethyl Lauroyl Arginate (LAE): Usage and Potential in Antimicrobial Packaging. In: BARROS-VEL?SQUEZ, J. Antimicrobial Food Packaging. London: Academic Press, 2016. c. 24. MUZZARELLI, R. et al. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrobial agents and chemotherapy, v. 34, n. 10, p. 2019?2023, 1990. NAFCHI, A. M. et al. Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of Food Engineering, v. 113, n. 4, p. 511?519, 2012. NAKASHIMA, A. Y.; CHEVALIER, R. C.; CORTEZ-VEGA, W. R. Desenvolvimento e caracteriza??o de filmes de col?geno com adi??o de ?leo essencial de cravo-da-?ndia. Journal of bioenergy and food science, v. 3, n. 1, p. 50-57, 2016. NAKNAEN, P.; TOBKAEW, W.; CHAICHALEOM, S. Properties of jackfruit seed starch oxidized with different levels of sodium hypochlorite. International Journal of Food Properties, v. 20, n. 5, p. 979?996, 2017. NASCIMENTO, S. M. S. do. Caracteriza??o termo-?ptica de surfactantes cati?nicos. 2018. 64 f. Disserta??o (Mestrado em F?sica) - Programa de P?s-Gradua??o em F?sica, Universidade Federal de Alagoas, Macei?. NERIN, C. et al. Ethyl Lauroyl Arginate (LAE): Antimicrobial Activity and Applications in Food Systems. In: BARROS-VEL?SQUEZ, J. Antimicrobial Food Packaging. London: Academic Press, 2016. c. 23. N?BLING, S. et al. Antimicrobial effect of lauroyl arginate ethyl on Escherichia coli O157:H7 and Listeria monocytogenes on red oak leaf lettuce. European Food Research and Technology, v. 243, n. 5, p. 1?9, 2017. ODIAN, G. Principles of polymerization. 4 ed. New Jersey: John Wiley & Sons. 2004. 848 p. OIRERE, E. K. et al. Phytochemical analysis of N-hexane leaf extract of Alpinia purpurata (Vieill.) K. Schum using Uv-Vis, FTIR and GC-MS. International Journal of Pharmacy and Pharmaceutical Sciences, v. 7, n. 8, p. 1-3, 2015. OLIVEIRA, A. S. B. de; MELO, N. R. de. Market and sustainability of food packaging: A review. Boletim Centro de Pesquisa de Processamento de Alimentos, v. 36, n. 1, p. 1-10, 2018. OLUWASINA, O. O. et al. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. International Journal of Biological Macromolecules, v. 135, p. 282?293, 2019. ORDO?EZ, J. A. et al. Tecnologia de alimentos: componentes dos alimentos e processos. v. 1. Porto Alegre: Artmed, 2005. 294 p. OSELIERO FILHO, P. L. Estudo estrutural e termodin?mico de sistemas autoorganizados: Micelas em solu??o. 2013. 132 f. Disserta??o (Mestrado em Ci?ncias) - Instituto de F?sica - Departamento de f?sica experimental, Universidade de S?o Paulo, S?o Paulo. OCHOA, T. A. et al. Design and characterization of corn starch edible films including beeswax and natural antimicrobials. Food and bioprocess technology, v. 10, n. 1, p. 103?114, 2017. OTONI, C. G. et al. Trends in food antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, v. 83, p. 60-73, 2016. OYEYINKA, S. A. et al. Physicochemical properties of starches with variable amylose contents extracted from bambara groundnut genotypes. Carbohydrate polymers, v. 133, p. 171?178, 2015. OZDEMIR, M.; FLOROS, J. D. Active food packaging technologies. Food Science and Nutrition, v. 44, n. 3, p. 185-193, 2004. PAOLI, M. A. Degrada??o e estabiliza??o de pol?meros. 1 ed. S?o Paulo: Artliber, 2009. 286 p. PEREIRA, J. M. Oxida??o do amido de milho com hipoclorito de s?dio e per?xido de hidrog?nio. 2014. 47 f. Trabalho de Conclus?o de Curso (Gradua??o em Engenharia de Alimentos) - Coordena??o de Tecnologia e Engenharia de Alimentos, Universidade Tecnol?gica Federal do Paran?, Campo Mour?o. PEREIRA, J. M. et al. Crystallinity, thermal and gel properties of oat starch oxidized using hydrogen peroxide. International Food Research Journal, v. 24, n. 4, p. 1545- 1552, 2017. PICULELL, L.; LINDMAN, B. Association and segregation in aqueous polymer/polymer, polymer/surfactant, and surfactant/surfactant mixtures: similarities and differences. Advances in Colloid and Interface Science, v. 41, p. 149?178, 1992. PINHEIRO, A. et al. Utiliza??o de revestimentos/filmes ed?veis para aplica??es alimentares. Boletim de Biotecnologia, v. 1, n. 85, p. 18-28, 2010. PONTES, B. R. B. Prepara??o e caracteriza??o de termopl?sticos a partir de amido de arroz. 2012. 98 f. Disserta??o (Mestrado em Ci?ncias) - Instituto de Qu?mica, Universidade de S?o Paulo, S?o Carlos. QUINTAVALLA, S.; VICINI, L. Antimicrobial food packaging in meat industry. Meat Science, v. 62, n. 3, p. 373-380, 2002. RADOSTA, S. et al. Properties of low?substituted cationic starch derivatives prepared by different derivatisation processes. Starch?St?rke, v. 56, n. 7, p. 277?287, 2004. RIBEIRO-SANTOS, R.; ANDRADE, M.; SANCHES-SILVA, A. Application of encapsulated essential oils as antimicrobial agents in food packaging. Current Opinion in Food Science, v. 14, p. 78-84, 2017. RODRIGUES, M. O. et al. Impacts of plastic products used in daily life on the environment and human health: what is known? Environmental toxicology and pharmacology, v. 72, p.1-19, 2019. RODR?GUEZ, E. et al. Cellular effects of monohydrochloride of L-arginine, N?- lauroyl ethylester (LAE) on exposure to Salmonella typhimurium and Staphylococcus aureus. Journal of Applied Microbiology, v. 96, n. 5, p. 903?912, 2004. RODR?GUEZ, M. et al. Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, v. 39, n. 8, p. 840? 846, 2006. RUCKMAN, S. A. et al. Toxicological and metabolic investigations of the safety of N- ?-Lauroyl-l-arginine ethyl ester monohydrochloride (LAE). Food and Chemical Toxicology, v. 42, n. 2, p. 245?259, 2004. SANDHU, K. S. et al. A comparison of native and oxidized normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT-Food Science and Technology, v. 41, n. 6, p. 1000?1010, 2008. SANYANG, M. et al. Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers, v. 7, n. 6, p. 1106?1124, 2015. SCHIRMER, M.; JEKLE, M.; BECKER, T. Starch gelatinization and its complexity for analysis. Starch/Staerke, v. 67, n. 1?2, p. 30?41, 2015. ?EN, F. et al. Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials. Carbohydrate Polymers, v. 170, p. 264?270, 2017. SHAIKH, M. et al. Physical, thermal, mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation. International Journal of Biological Macromolecules, v. 124, p. 209?219, 2019. SHARMA, K. P. et al. Assembly of polyethyleneimine in the hexagonal mesophase of nonionic surfactant: Effect of pH and temperature. Journal of Physical Chemistry B, v. 115, n. 29, p. 9059?9069, 2011. SHARMA, R.; GHOSHAL, G. Emerging trends in food packaging. Nutrition and Food Science, v. 48, n. 5, p. 764?779, 2018. SILVA, O. A. et al. Synthesis and characterization of a low solubility edible film based on native cassava starch. International Journal of Biological Macromolecules, v. 128, p. 290?296, 2019. SILVA, R. M. et al. Caracter?sticas f?sico-qu?micas de amidos modificados com permanganato de pot?ssio/?cido l?tico e hipoclorito de s?dio/?cido l?tico. Ci?ncia e Tecnologia de Alimentos, v. 28, n. 1, p. 66?77, 2008. SINGH, N. et al. Morphological, thermal and rheological properties of starches from different botanical sources. Food chemistry, v. 81, n. 2, p. 219?231, 2003. SOARES, N. de F. F. et al. Embalagem ativa na conserva??o de alimentos. In: AZEREDO, H. M. C. Fundamentos de estabilidade de alimentos. Bras?lia: Embrapa, 2012. c. 8. SOARES, N. de F. F. et al. Novos desenvolvimentos e aplica??es em embalagens de alimentos. Ceres, v. 56, n. 4, p. 370-378, 2009. SOARES, R. M. D. et al. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering C, v. 92, p. 969?982, 2018. SOCIEDADE BRASILEIRA DE FARMACOGNOSIA. Amidos. 2009. Dispon?vel em:< http://www.sbfgnosia.org.br/Ensino/amido.html>. Acesso em: 12 fev. 2020. SOFI, S. A. et al. A Comprehensive Review on Antimicrobial Packaging and its Use in Food Packaging. Current Nutrition & Food Science, v. 14, n. 4, p. 305?312, 2018. SOUZA, A. C. et al. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT - Food Science and Technology, v. 46, n. 1, p. 110-117, 2012. SUKHIJA, S.; SINGH, S.; RIAR, C. S. Physicochemical, crystalline, morphological, pasting and thermal properties of modified lotus rhizome (Nelumbo nucifera) starch. Food Hydrocolloids, v. 60, p. 50?58, 2016. SUKHIJA, S.; SINGH, S.; RIAR, C. S. Molecular characteristics of oxidized and crosslinked lotus (Nelumbo nucifera) rhizome starch. International Journal of Food Properties, v. 20, p. 1065?1081, 2017. SUN, Y. et al. Synergism Effect of Surfactant and Inorganic Salt on the Properties of Starch/Poly(Vinyl Alcohol) Film. Starch - St?rke, v. 70, n. 7?8, p. 1-6, 2018. SUN, H. et al. Mechanical, barrier and antimicrobial properties of corn distarch phosphate/nanocrystalline cellulose films incorporated with Nisin and ?-polylysine. International Journal of Biological Macromolecules, v. 136, p. 839?846, 2019. TAO, J. et al. A new methodology combining microscopy observation with Artificial Neural Networks for the study of starch gelatinization. Food Hydrocolloids, v. 74, p. 151?158, 2018. T?PIA-BL?CIDO, D. R.; SOBRAL, P. J. D. A.; MENEGALLI, F. C. Effect of drying conditions and plasticizer type on some physical and mechanical properties of amaranth flour films. LWT, v. 50, n. 2, p. 392-400, 2013. TARAJ, K. et al. Eco-extraction of albanian chamomile essential oils by liquid Co2 at different temperatures and characterisation by FTIR spectroscopy. J Environ Prot Ecol, v. 18, p. 117?124, 2017. TAVARES, L. Efeitos sin?rgicos entre biopol?meros: aplica??o a filmes e revestimentos ed?veis para embalagem alimentar. 2015. 87 f. Disserta??o (Mestrado Integrado em Bioengenharia) - Departamento de Qu?mica, Universidade do Porto, Porto. TAVASSOLI - KAFRANI, E.; SHEKARCHIZADEH, H.; MASOUDPOURBEHABADI, M. Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, v. 137, p. 360-374, 2016. TESTER, R. F.; KARKALAS, J.; QI, X. Starch?composition, fine structure and architecture. Journal of Cereal Science, v. 39, n. 2, p. 151?165, 2004. THARANATHAN, R. N. Starch?value addition by modification. Critical reviews in food science and nutrition, v. 45, n. 5, p. 371?384, 2005. THIR?, R. M. S. M. et al. Redu??o da hidrofilicidade de filmes biodegrad?veis ? base de amido por meio de polimeriza??o por plasma. Pol?meros: Ci?ncia e Tecnologia, v. 14, n. 1, p. 57?62, 2004. USP. Cereais e massas. 2017. Dispon?vel em: <https://edisciplinas.usp.br/pluginfile.php/4135326/mod_resource/content/1/Aula%20de %20TD%206%20-%20Cereais%20e%20Massas.pdf>. Acesso em: 12 fev. 2019. VANIER, N. L. et al. Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry, v. 221, p. 1546?1559, 2017. VEDEQSA. Etil lauroil arginato E-243 (LAE?): Um nuervo conservante para la industria alimentaria. 2015. Dispon?vel em: <http://media.firabcn.es/content/S051015/docs/presentaciones_IMP/VEDEQSAMIRENAT. pdf/>. Acesso em: 09 Dez 2019. VEDEQSA. Specialties for the food industry. 2018. Dispon?vel em: <https://www.lamirsa.com/catalogo/ved2018eng/mobile/html5forpc.html/>. Acesso em: 09 Dez 2019. VERMEIREN, L. et al. Developments in the active packaging of foods. Trends in Food Science & Technology, v. 10, n. 3, p. 77-86, 1999. VERT, M. et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)*. Pure Appl. Chem, v. 84, n. 2, p. 377-410, 2012. VILLADIEGO, A. M. et al. Filmes e revestimentos comest?veis na conserva??o de produtos aliment?cios. Revista Ceres, v. 52, n. 300, p. 748-753, 2005. VILLALOBOS, R. et al. Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food hydrocolloids, v. 19, n. 1, p. 53?61, 2005. WANG, S. et al. Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, v. 14, n. 5, p. 568?585, 2015. WANG, Y.-J.; WANG, L. Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers, v. 52, n. 3, p. 207?217, 2003. WESLEY, R. D. et al. Structure of polymer/surfactant complexes formed by poly (2- (dimethylamino) ethyl methacrylate) and sodium dodecyl sulfate. Langmuir, v. 18, n. 15, p. 5704?5707, 2002. XU, X.-H. et al. Mechanisms of N ?-lauroyl arginate ethyl ester against Penicillium digitatum and Pectobacterium carotovorum subsp. carotovorum. Journal of food science and technology, v. 55, n. 9, p. 3675?3682, 2018. YILDRIM, S. et al. Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety, v. 2017, n. 1, p. 165-199, 2018. YOUSUF, B. QADRI, O. S.; SRIVASTAVA, A. K. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT, v. 89, p. 198-209, 2017. ZAMUDIO-FLORES, P. B. et al. Effect of oxidation level on the dual modification of banana starch: The mechanical and barrier properties of its films. Journal of Applied Polymer Science, v. 112, n. 2, p. 822?829, 2009. ZAVAREZE, E. R. et al. Caracteriza??o qu?mica e rendimento de extra??o de amido de arroz com diferentes teores de amilose. Brazilian Journal of Food Technology, v. 5, p. 24?30, 2009. ZHANG, L. L. et al. Effects of modified starches on the processing properties of heatresistant blueberry jam. LWT - Food Science and Technology, v. 72, p. 447?456, 2016. ZHANG, Y. et al. Characterization of Extruded Thermoplastic Starch Reinforced by Montmorillonite Nanoclay. Journal of Polymers and the Environment, v. 21, n. 1, p. 122?131, 2013. ZHONG, Y.; LI, Y. Effects of surfactants on the functional and structural properties of kudzu (Pueraria lobata) starch/ascorbic acid films. Carbohydrate polymers, v. 85, n. 3, p. 622?628, 2011. ZHOU, F. et al. Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. International Journal of Biological Macromolecules, v. 84, p. 410?417, 2016. ZHU, L. et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies. Bioresource Technology, v. 124, p. 455?459, 2012. ZHU, L. et al. Using RVA-full pattern fitting to develop rice viscosity fingerprints and improve type classification. Journal of Cereal Science, v. 81, p. 1?7, 2018. ZIA-UD-DIN; XIONG, H.; FEI, P. Physical and chemical modification of starches: A review. Critical Reviews in Food Science and Nutrition, v. 57, n. 12, p. 2691?2705, 2017.Meio-ambientealimentos segurosembalagens ativasamidos modificadosEnvironmentsafe foodsactive packagingmodified starchesCi?ncia e Tecnologia de AlimentosDesenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato)Development of active antimicrobial films based on nonionic, cationic and anionic starches incorporated with the cationic surfactant LAE (N??lauryl-l-arginine ethyl ester monohydrochloride)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2020 - Joyce Fagundes Gomes Motta.pdf.jpg2020 - Joyce Fagundes Gomes Motta.pdf.jpgimage/jpeg2075http://localhost:8080/tede/bitstream/jspui/6195/4/2020+-+Joyce+Fagundes+Gomes+Motta.pdf.jpgf1de3d516651f696c4451392aabcc206MD54TEXT2020 - Joyce Fagundes Gomes Motta.pdf.txt2020 - Joyce Fagundes Gomes Motta.pdf.txttext/plain200284http://localhost:8080/tede/bitstream/jspui/6195/3/2020+-+Joyce+Fagundes+Gomes+Motta.pdf.txtd02df9a72e67f7764d98a7b325a29236MD53ORIGINAL2020 - Joyce Fagundes Gomes Motta.pdf2020 - Joyce Fagundes Gomes Motta.pdfapplication/pdf1649867http://localhost:8080/tede/bitstream/jspui/6195/2/2020+-+Joyce+Fagundes+Gomes+Motta.pdfefb6bea5e97d9f256035703874c328d8MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/6195/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/61952023-01-11 02:00:27.491oai:localhost:jspui/6195Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-01-11T04:00:27Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato)
dc.title.alternative.eng.fl_str_mv Development of active antimicrobial films based on nonionic, cationic and anionic starches incorporated with the cationic surfactant LAE (N??lauryl-l-arginine ethyl ester monohydrochloride)
title Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato)
spellingShingle Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato)
Motta, Joyce Fagundes Gomes
Meio-ambiente
alimentos seguros
embalagens ativas
amidos modificados
Environment
safe foods
active packaging
modified starches
Ci?ncia e Tecnologia de Alimentos
title_short Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato)
title_full Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato)
title_fullStr Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato)
title_full_unstemmed Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato)
title_sort Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato)
author Motta, Joyce Fagundes Gomes
author_facet Motta, Joyce Fagundes Gomes
author_role author
dc.contributor.advisor1.fl_str_mv Melo, Nath?lia Ramos de
dc.contributor.advisor1ID.fl_str_mv 102.064.957-73
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1836355123449583
dc.contributor.advisor-co1.fl_str_mv Vitorazi, Let?cia
dc.contributor.referee1.fl_str_mv Melo, Nath?lia Ramos de
dc.contributor.referee2.fl_str_mv Moreira, Francys Kley Vieira
dc.contributor.referee3.fl_str_mv Silva, Otniel Freitas
dc.contributor.authorID.fl_str_mv 116.983.586-44
https://orcid.org/0000-0001-8591-7472
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5373287724417477
dc.contributor.author.fl_str_mv Motta, Joyce Fagundes Gomes
contributor_str_mv Melo, Nath?lia Ramos de
Vitorazi, Let?cia
Melo, Nath?lia Ramos de
Moreira, Francys Kley Vieira
Silva, Otniel Freitas
dc.subject.por.fl_str_mv Meio-ambiente
alimentos seguros
embalagens ativas
amidos modificados
topic Meio-ambiente
alimentos seguros
embalagens ativas
amidos modificados
Environment
safe foods
active packaging
modified starches
Ci?ncia e Tecnologia de Alimentos
dc.subject.eng.fl_str_mv Environment
safe foods
active packaging
modified starches
dc.subject.cnpq.fl_str_mv Ci?ncia e Tecnologia de Alimentos
description Active packaging can contribute positively to the environment, being able to be produced from renewable sources, and offering consumers safe food, when activated by the incorporation of antimicrobial agents in the polymer matrix. Among these package, the films can be based on starches, which can still be modified and consequently obtain films with different characteristics and among the antimicrobial agents considered GRAS by the FDA and which can be used in food and consequently incorporated into the films, there is the cationic surfactant LAE (N?-lauroyl-L-arginine ethyl ester monohydrochloride, which presents a wide spectrum of performance. The aim of this study was, firstly, to study the properties of native (NS), cationic (CS) and anionic starches (AShc and ASs) about amylose and moisture content, granule morphology, paste properties and chemical structure (FT-IR) and later to produce films based on these starches incorporated with LAE. The films were produced by the casting method and characterized with thickness, solubility and swelling content, water vapor transmission rate (WVTR), mechanical and antimicrobial properties, chemical structure (FT-IR), surface (SEM) and optical properties (L*a*b* and opacity). Although the starches studied were obtained from different botanical sources and were modified, they did not show a difference in chemical structure and moisture content (p>0,05). However, differences were observed regarding the amylose content, granule morphology, and paste properties that may be associated not only with the botanical source, but also with the modification processes that the starches underwent. Regarding the formed films, the FT-IR did not detect differences between the chemical structures of films with and without LAE. The SEM detected the presence of some points that may be dirt or ?ghosts? and an increase in irregularities with the presence of LAE according to the methodology used. It was also observed that the films had different characteristics and the addition of LAE was responsible for promoting in most films an increase in thickness and in all films an increase in flexibility and a decrease in stiffness. In addition, LAE significantly increased the swelling content of AShc film and the solubility content of AShc and CS films. The ASs ? based film is highly soluble both with and without the insertion of the surfactant, which was also responsible for increasing the WVTR of all films, except for these ASs. As for the color, the films presented a clear aspect and few opaque and the LAE was responsible for decreasing (p<0.05) the clarity and increasing the opacity of the films based on NS and CS. Finally, LAE made the packaging active, inhibiting the development of the gram-positive bacteria Staphylococcus aureus (more sensitive), gram-negative Escherichia coli and the fungus Penicillium sp. Thus, these films have the potential to be used by the food packaging industry and since the four starches generated films with different characteristics, the application of these packages can be used for various food products. Also, the incorporation of LAE tends to prolong the validity of the packaged products.
publishDate 2020
dc.date.issued.fl_str_mv 2020-02-03
dc.date.accessioned.fl_str_mv 2023-01-10T20:52:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MOTTA, Joyce Fagundes Gomes. Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato). 2020. 81 f. Disserta??o (Mestrado em Ci?ncia e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2020.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/6195
identifier_str_mv MOTTA, Joyce Fagundes Gomes. Desenvolvimento de filmes ativos antimicrobianos a base de amidos n?o i?nico, cati?nico e ani?nicos incorporados com o surfactante cati?nico LAE (N?-lauril-l-arginina etil ?ster monoclorohidrato). 2020. 81 f. Disserta??o (Mestrado em Ci?ncia e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2020.
url https://tede.ufrrj.br/jspui/handle/jspui/6195
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ABDELGHANY, A. M. et al. Combined DFT/FTIR structural studies of monodispersed PVP/Gold and silver nano particles. Journal of Alloys and Compounds, v. 646, p. 326? 332, 2015. ABRE. Estudo macroecon?mico da embalagem ABRE/FGV. Dispon?vel em: <https://www.abre.org.br/dados-do-setor/ano2017/>. Acesso em: 13 fev. 2020. AHVENAINEN, R. Novel food packaging techniques. 1 ed. Boca Raton: CRC Press, 2003. 590 p. AI, Y.; JANE, J. Gelatinization and rheological properties of starch. Starch?St?rke, v. 67, n. 3?4, p. 213?224, 2015. AL-NEMR, T. M. et al. Influence of nisin and lauryl arginine ester against some foodborne pathogens in recombined feta and processed spread cheese. Journal of Food Safety, v. 36, n. 2, p. 172?179, 2016. ALMEIDA, D. M. et al. Propriedades f?sicas, qu?micas e de barreira em filme formados por blenda de celulose bacteriana e f?cula de batata. Pol?meros: Ci?ncia e Tecnologia, v. 23, n. 4, p. 538?546, 2013. AMINZARE, M. et al. Antibacterial activity of corn starch films incorporated with Zataria multiflora and Bonium persicum essential oils. Annual Research and Review in Biology, v. 19, n. 1, 2017. ANDRADE, I. H. P. et al. Documentos de patentes relacionados ? produ??o de filmes biodegrad?veis comest?veis. Cadernos de Prospec??o, v. 11, n. 1, p. 183-197, 2018. ANTONIO, C. B. Estudo termodin?mico de associa??o de surfatantes zwitteri?nicos e sua intera??o com pol?meros atrav?s de titula??o calorim?trica. 2011. 124 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Qu?mica, Universidade de Campinas, Campinas. ANVISA. M?dulo 5 - Teste de Sensibilidade aos Antimicrobianos. 2008. Dispon?vel em: < http://www.anvisa.gov.br/servicosaude/controle/rede_rm/cursos/boas_praticas/modulo5 /interpretacao.htm>. Acesso em: 09 dez. 2019. APICELLA, A. et al. Antimicrobial biodegradable coatings based on LAE for food packaging applications. AIP Conference Proceedings, v. 1981, 2018. ASKER, D.; WEISS, J.; MCCLEMENTS, D. J. Analysis of the interactions of a cationic surfactant (Lauric arginate) with an anionic biopolymer (Pectin): Isothermal titration calorimetry, light scattering, and microelectrophoresis. Langmuir, v. 25, n. 1, p. 116? 122, 2009. ASKER, D.; WEISS, J.; MCCLEMENTS, D. J. Formation and stabilization of antimicrobial delivery systems based on electrostatic complexes of cationic-non-ionic mixed micelles and anionic polysaccharides. Journal of Agricultural and Food Chemistry, v. 59, n. 3, p. 1041?1049, 2011. ASTM - American Society for Testing Materials. ASTM D 882-12 - Standard Test Method for Tensile Properties of Thin Plastic Sheeting. In: Annual Book of ASTM, 2012. ASTM - American Society for Testing Materials. ASTM D 1746-15 - Standard Test Method for Transparency of Plastic Sheeting. In: Annual Book of ASTM, 2015. AWOKOYA, K. N. et al. Pasting, morphological and functional properties of breadfruit (Artocarpus altilis) starch cross-linked with ethylene glycol dimethacrylate. African Journal of Food Science and Technology, v. 9, n. 1, p. 8-18, 2018. BABU, A. S. et al. A comparative study on dual modification of banana (Musa paradisiaca) starch by microwave irradiation and cross-linking. Journal of Food Measurement and Characterization, v. 12, n. 3, p. 2209?2217, 2018. BANDEIRA, E. I.; MARQUES, P. T. S?ntese e caracteriza??o de micropart?culas de amido sol?vel e f?cula de mandioca reticuladas com tripolifosfato de s?dio. Blucher Chemical Engineering Proceedings, v. 2, n. 1, p. 105?113, 2015. BASIAK, E.; LENART, A.; DEBEAUFORT, F. Effect of starch type on the physicochemical properties of edible films. International Journal of Biological Macromolecules, v. 98, p. 348?356, 2017. BASIAK, E.; LENART, A.; DEBEAUFORT, F. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, v. 10, n. 4, p. 1-18, 2018. BECERRIL, R. et al. Antimicrobial activity of Lauroyl Arginate Ethyl (LAE), against selected food-borne bacteria. Food Control, v. 32, n. 2, p. 404?408, 2013. BERNARDO, A. S. Di; BERNARDO, L. Di. Uso de amido de mandioca cationico como auxiliar de flocula??o. In: Congreso Interamericano de Ingenier?a Sanitaria y Ambiental, 27., 2000, Porto Alegre. Anais...Rio de Janeiro: ABES, p. 1-11. BERSANETI, G. T. et al. Evaluation of the prebiotic activities of edible starch films with the addition of nystose from Bacillus subtilis natto. LWT, v. 116, p.1-6, 2019. BERTUZZI, M. A.; ARMADA, M.; GOTTIFREDI, J. C. Physicochemical characterization of starch based films. Journal of Food Engineering, v. 82, n. 1, p. 17? 25, 2007. BIDUSKI, B. et al. Physicochemical properties of nanocomposite films made from sorghum-oxidized starch and nanoclay. Starch/Staerke, v. 69, n. 11?12, p. 1-27, 2017. BONNAUD, M.; WEISS, J.; MCCLEMENTS, D. J. Interaction of a food-grade cationic surfactant (Lauric Arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan). Journal of Agricultural and Food Chemistry, v. 58, n. 17, p. 9770?9777, 2010. BRAGA, L. R.; PERES, L. Novas tend?ncias em embalagens para alimentos: revis?o. Boletim Centro de Pesquisa de Processamento de Alimentos, v. 28, p. 69-84, 2010. BRAGA, L. R.; SILVA, F. M. Embalagens ativas: uma nova abordagem para embalagens aliment?cias. Brazilian Journal of Food Research, v. 8, n. 4, p. 170-186, 2017. BUSTILLOS-RODR?GUEZ, J. C. et al. Physicochemical, Thermal and Rheological Properties of Native and Oxidized Starch from Corn Landraces and Hybrids. Food Biophysics, v. 14, n. 2, p. 182?192, 2019. CAETANO, K. et al. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life, v. 16, p. 138?147, 2018. CALVINI, P.; GORASSINI, A. FTIR?deconvolution spectra of paper documents. Restaurator, v. 23, n. 1, p. 48?66, 2002. CANEVAROLO JR, S. V. Ci?ncia dos pol?meros - Um texto b?sico para tecn?logos e engenheiros. 1 ed. S?o Paulo: Artliber, 2002. 280 p. DOCSITY. O estado s?lido em pol?meros. 2013. Dispon?vel em: <https://www.docsity.com/pt/estado-solido-em-polimeros-apostilas-processos-depolimerizacao/ 332728/>. Acesso em 06 jan. 2020. CAETANO, K. et al. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life, v. 16, p. 138?147, 2018. CARDOSO, T. Avalia??o da Spirulina platensis na produ??o de biofilmes de derivados de mandioca e gelatina com aplica??o em pimenta cambuci (Capsicum sp.). 2017. 106 f. Disserta??o (Mestrado em Ci?ncia e Tecnologia de Alimentos) - Programa de P?s-Gradua??o em Ci?ncia e Tecnologia de Alimentos, Universidade Estadual de Ponta Grossa, Ponta Grossa. CARVALHO, D. de M. et al. Filme ativo de acetato de celulose incorporado com nanosuspens?o de curcumina. Pol?meros, v. 27, p. 70?76, 2017. CHANG, S.-Y.; LAI, H.-M. Effect of trisodium citrate on swelling property and structure of cationic starch thin film. Food Hydrocolloids, v. 56, p. 254?265, 2016. CHEN, P. et al. Phase transition of starch granules observed by microscope under shearless and shear conditions. Carbohydrate Polymers, v. 68, n. 3, p. 495?501, 2007. CHEN, Q. et al. Recent progress in chemical modification of starch and its applications. RSC Advances, v. 5, n. 83, p. 67459?67474, 2015. CHENG, J. et al. An active packaging film based on yam starch with eugenol and its application for pork preservation. Food Hydrocolloids, v. 96, p. 546?554, 2019. CORISECTELMO. Espa?o de cor Lab. 2011. Dispon?vel em: <http://corisectelmo.blogspot.com/2011/01/aula-21-espaco-de-cor-lab.html>. Acesso em: 23 Jan. 2020. DALTIN, D. Tensoativos: qu?mica, propriedades e aplica??es. 1 ed. S?o Paulo: Blucher, 2011. 330 p. DAYRIT, F. M. The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists? Society, v. 92, n. 1, p. 1?15, 2015. DEMIATE, I. M. et al. Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydrate Polymers, v. 42, n. 2, p. 149?158, 2000. DIAS-MARTINS, A. M. et al. Impacts of ohmic heating on decorticated and whole pearl millet grains compared to open-pan cooking. Journal of cereal science, v. 85, p. 120? 129, 2019. DIAS, A. R. G. et al. Pasting, expansion and textural properties of fermented cassava starch oxidised with sodium hypochlorite. Carbohydrate Polymers, v. 84, n. 1, p. 268? 275, 2011. DOBRUCKA, R.; PRZEKOP, R. New perspectives in active and intelligent food packaging. Journal of Food Processing and Preservation, v. 43, n. 11, p. 1-9, 2019. DOMENE-L?PEZ, D. et al. Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers, v. 11, n. 7, p. 1-7, 2019. EFSA. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food on a request from the commission related to an application on the use of ethyl lauroyl arginate as a food additive question number EFSA-Q-2006-035. 2007. Dispon?vel em: <https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2007.511/>. Acesso em 09 Dez 2019. EL HALAL, S. L. M. et al. Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, v. 133, p. 644?653, 2015. EL HALAL, S. L. M. et al. Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley. Journal of the Science of Food and Agriculture, v. 97, n. 2, p. 411?419, 2017. EVANGELHO, J. A. et al. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydrate Polymers, v. 222, p. 114981, 2019. FAIT, M. E. et al. Prodcci?n de un agente antimicrobiano con potencial actividad tensioativa mediante el empleo de tecnologias amigables con el medio ambiente. AUGMDOMUS, v. 4, p. 49-61, 2012. FAKHOURI, F. M. et al. Filmes e coberturas comest?veis compostas ? base de amidos nativose gelatina na conserva??o e aceita??o sensorial de uvas Crimson. Ci?ncia e Tecnologia de Alimentos, v. 27, n. 2, p. 369?375, 2007. FALGUERA, V. et al. Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, v. 22, p. 292-303, 2011. FANGFANG, Z. et al. Effects of virgin coconut oil on the physicochemical, morphological and antibacterial properties of potato starch-based biodegradable films. International Journal of Food Science & Technology, v. 55, n. 1, p. 192?200, 2020. FELIPE, L. de O.; DIAS, S. de C. Surfactantes sint?ticos e biossurfactantes: vantagens e desvantagens. Qu?mica nova escola, v. 39, n. 3, p. 228?236, 2017. FENNEMA, O. R.; DAMODARAN, S.; PARKIN, K. L. Qu?mica de alimentos de Fennema. 4 ed. Porto Alegre: Artmed, 2010. 900 p. FONSECA, L. M. et al. Fabrication and Characterization of Native and Oxidized Potato Starch Biodegradable Films. Food Biophysics, v. 13, n. 2, p. 163?174, 2018. GAIKWAD, K. K. et al. Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. Journal of Food Measurement and Characterization, v. 11, n. 4, p. 1706?1716, 2017. GA?KOWSKA, D.; JUSZCZAK, L. Effects of amino acids on gelatinization, pasting and rheological properties of modified potato starches. Food Hydrocolloids, v. 92, p. 143?154, 2019. GALLOTO, M. J.; GUARDA, A.; DICASTILLO, C. L. D. Antimicrobial active polymers in food packaging. In: CIRILLO, G.; SPIZZIRRI, U. G.; IEMMA, F. Functional Polymers in Food Science: From Technology to Biology. Beverly: Scrivener Publishing, 2015. c. 10. GAMARRA-MONTES, A. et al. Antibacterial films made of ionic complexes of Poly(?- glutamic acid) and ethyl lauroyl arginate. Polymers, v. 10, n. 1, p. 1-14, 2017. GAMARRA, A. et al. Ionic coupling of hyaluronic acid with ethyl N-lauroyl l-arginate (LAE): Structure, properties and biocide activity of complexes. Carbohydrate polymers, v. 197, p. 109?116, 2018. GE, X. et al. Improved mechanical and barrier properties of starch film with reduced graphene oxide modified by SDBS. Journal of Applied Polymer Science, v. 134, n. 22, p. 1-8, 2017. GOESAERT, H. et al. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in food science & technology, v. 16, n. 1?3, p. 12? 30, 2005. GON?ALVES, S. M. Caracteriza??o das propriedades funcionais de filmes ativos antimicrobianos aditivados com ?leos essenciais e plastificante. 2016. 84 f. Disserta??o (Mestrado em Ci?ncia e Tecnologia de Alimentos) - Programa de P?sgradua??o em Ci?ncia e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Serop?dica. GON?ALVES, S. M. et al. Structure and functional properties of cellulose acetate films incorporated with glycerol. Carbohydrate polymers, v. 209, p. 190?197, 2019a. GON?ALVES, S. S. et al. Efeito do glicerol nas propriedades mec?nicas de filmes a base de quitosana. DESAFIOS-Revista Interdisciplinar Da Universidade Federal Do Tocantins, v. 6, n. Especial, p. 110?117, 2019b. GONTARD, N. et al. Food packaging applications of biopolymer?based films. In: PLACKETT, D. Biopolymers?New Materials for Sustainable Films and Coatings. 1 ed. New Jersey: Wiley, 2011. p. 211?232. GUIMAR?ES, M. et al. High moisture strength of cassava starch/polyvinyl alcoholcompatible blends for the packaging and agricultural sectors. Journal of Polymer Research, v. 22, n. 10, p. 1-18, 2015. GUO, M.; YADAV, M. P.; JIN, T. Z. Antimicrobial edible coatings and films from microemulsions and their food applications. International Journal of Food Microbiology, v. 263, p. 9-16, 2017. GUZM?N, E. et al. Polymer?surfactant systems in bulk and at fluid interfaces. Advances in colloid and interface science, v. 233, p. 38?64, 2016. HADIAN, M. et al. Encapsulation of Rosmarinus officinalis essential oils chitosanbenzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. LWT - Food Science and Technology, v. 84, p. 394-401, 2017. HAGHIGHI, H. et al. Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, v. 19, p. 31?39, 2019. HAGHIGHI, H. et al. Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocolloids, v. 100, n. 105419, p. 1-35, 2020. HAN, H. et al. Insight on the changes of cassava and potato starch granules during gelatinization. International Journal of Biological Macromolecules, v. 126, p. 37?43, 2019. HAN, J. H. Innovations in Food Packaging. 1. ed. London: Academic Press, 2005. 503 p. HARI, P. K.; GARG, S.; GARG, S. K. Gelatinization of starch and modified starch. Starch?St?rke, v. 41, n. 3, p. 88?91, 1989. HASHEMI, S. M. B.; MOUSAVI KHANEGHAH, A. Characterization of novel basil59 seed gum active edible films and coatings containing oregano essential oil. Progress in Organic Coatings, v. 110, p. 35?41, 2017. HE, H. et al. Improved stability and controlled release of CLA with spray-dried microcapsules of OSA-modified starch and xanthan gum. Carbohydrate Polymers, v. 147, p. 243?250, 2016. HENRIQUE, C. M.; CEREDA, M. P.; SARMENTO, S. B. S. Caracter?sticas f?sicas de filmes biodegrad?veis produzidos a partir de amidos modificados de mandioca. Ci?ncia e Tecnologia de Alimentos, v. 28, n. 1, p. 231?240, 2008. HERNANDEZ, D.; CARDELL, E.; ZARATE, V. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin?like substance produced by Lactobacillus plantarum TF711. Journal of applied microbiology, v. 99, n. 1, p. 77?84, 2005. HIGUERAS, L. et al. Development of a novel antimicrobial film based on chitosan with LAE (ethyl-N?-dodecanoyl-l-arginate) and its application to fresh chicken. International Journal of Food Microbiology, v. 165, n. 3, p. 339?345, 2013. HOOVER, R. et al. Composition, molecular structure, properties, and modification of pulse starches: A review. Food research international, v. 43, n. 2, p. 399?413, 2010. HORIMOTO, L. K.; CABELLO, C. Par?metros para a produ??o de amidos cati?nicos de f?cula de mandioca e de batata-doce. Revista Ra?zes e Amidos Tropicais, v. 1, n. 1, p. 69?75, 2005. HORNUNG, P. S. et al. Investigation of the photo-oxidation of cassava starch granules. Journal of Thermal Analysis and Calorimetry, v. 123, n. 3, p. 2129?2137, 2016. IMRAN, M. et al. Synthesis of highly stable ?-Fe 2 O 3 ferrofluid dispersed in liquid paraffin, motor oil and sunflower oil for heat transfer applications. RSC advances, v. 8, n. 25, p. 13970?13975, 2018. INSTITUTO ADOLFO LUTZ. M?todos f?sico-qu?micos para an?lise de alimentos. 4 ed. S?o Paulo: Instituto Adolfo Lutz, 2008. 1020 p. JANJARASSKUL, T.; SUPPAKUL, P. Active and intelligent packaging: the indication of quality and safety. Food Science and Nutrition, v. 58, n. 5, p. 808-831, 2017. JANSEN, S. et al. Analysis of nitrite and nitrate in the corned beef and smoked beef by Using Visible Spectrophotometry method. In: IOP Conference Series: Earth and Environmental Science, 1, Anais...IOP Publishing, 2018. JAVADIAN, S.; KAKEMAM, J. Intermicellar interaction in surfactant solutions; a review study. Journal of Molecular Liquids, v. 242, p. 115?128, 2017. JIM?NEZ, A. et al. Edible and biodegradable starch films: a review. Food and Bioprocess Technology, v. 5, n. 6, p. 2058?2076, 2012. KAHVAND, F.; FASIHI, M. Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. International Journal of Biological Macromolecules, v. 140, p. 775-781, 2019. KAPPES, M. C. et al. Estudo das propriedades de pasta de diferentes gen?tipos de cevada. In: XXV Congresso Brasileiro de Ci?ncia e Tecnologia de Alimentos, 25., 2016, Gramado. Anais...Gramado: sbCTA, 2016. p. 1-6. KASHIRI, M. et al. Novel antimicrobial zein film for controlled release of lauroyl arginate (LAE). Food Hydrocolloids, v. 61, p. 547?554, 2016. KAUR, L.; SINGH, J. Starch: Modified Starches. In: CABALLERO, B.; FINGLAS, P. M.; TOLDR?, F. B. T.-E. OF F. AND H. Encyclopedia of Food and Health. London: Academic Press, 2016. p. 152?159. KAUR, M.; BHULLAR, G. K. Partial Characterization of Tamarind (Tamarindus indica L.) Kernel Starch Oxidized at Different Levels of Sodium Hypochlorite. International Journal of Food Properties, v. 19, n. 3, p. 605?617, 2016. KAUR, S. et al. Diversity in properties of seed and flour of kidney bean germplasm. Food Chemistry, v. 117, n. 2, p. 282?289, 2009. KAVOOSI, G.; DADFAR, S. M. M.; PURFARD, A. M. Mechanical, Physical, Antioxidant, and Antimicrobial Properties of Gelatin Films Incorporated with Thymol for Potential Use as Nano Wound Dressing. Journal of Food Science, v. 78, n. 2, p. 244? 250, 2013. KHANEGHAH, A. M.; HASHEMI, S. M. B.; LIMBO, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: na overview of approaches and interactions. Food and Bioproducts Processing, v. 111, p. 1-19, 2018. KONITA MINOLTA. Entendendo o espa?o de Cor L*a*b*. 2019. Dispon?vel em: < http://sensing.konicaminolta.com.br/2013/11/entendendo-o-espaco-de-cor-lab/>. Acesso em 09 dez. 2019. KR?LIKOWSKA, K. et al. Relationship between sorption characteristic and selected functional properties of chemically modified waxy maize starches. Journal of Food Processing and Preservation, v. 43, p. 1-11, 2019. KUAKPETOON, D.; WANG, Y. Characterization of different starches oxidized by hypochlorite. Starch?St?rke, v. 53, n. 5, p. 211?218, 2001. KUO, W.-Y.; LAI, H.-M. Changes of property and morphology of cationic corn starches. Carbohydrate Polymers, v. 69, n. 3, p. 544?553, 2007. LA FUENTE, C. I. A. et al. Ozonation of cassava starch to produce biodegradable films. International Journal of Biological Macromolecules, v. 141, p. 713?720, 2019. LANDIM, A. P. M. et al. Sustentabilidade quanto ?s embalagens de alimentos no Brasil. Pol?meros, v. 26, p. 82-92, 2016. LAROTONDA, F. D. S. Desenvolvimento de biofilmes a partir da f?cula de mandioca. 2002. 78 f. Disserta??o (Mestrado em Engenharia de Alimentos) - Curso de P?s-Gradua??o em Engenharia de Alimentos, Universidade Federal de Santa Catarina. LAWAL, O. S. Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food chemistry, v. 87, n. 2, p. 205?218, 2004. LAWAL, O. S. et al. Oxidized and acid thinned starch derivatives of hybrid maize: functional characteristics, wide-angle X-ray diffractometry and thermal properties. International Journal of Biological Macromolecules, v. 35, n. 1?2, p. 71?79, 2005. LAZZAROTTO, S. R. da S. et al. Induced effects by oxidation with potassium permanganate on the thermal, morphological, colorimetric and pasting properties of corn starch. Ukrainian Food Journal, v. 6, n. 2, 197-210, 2017. LI, Z.; GALLUS, L. Surface configuration of sorbed hexadecyltrimethylammonium on kaolinite as indicated by surfactant and counterion sorption, cation desorption, and FTIR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 264, n. 1?3, p. 61?67, 2005. LIU, R. et al. Studies on best dose of X-ray for Hep-2 cells by using FTIR, UV?vis absorption spectroscopy and flow cytometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 73, n. 4, p. 601?607, 2009. LOEFFLER, M. et al. Electrostatic interactions of cationic lauric arginate with anionic polysaccharides affect antimicrobial activity against spoilage yeasts. Journal of applied microbiology, v. 117, n. 1, p. 28?39, 2014. LOPEZ-SILVA, M. et al. Effect of amylose content in morphological, functional and emulsification properties of OSA modified corn starch. Food Hydrocolloids, v. 97, p. 1- 8, 2019. LOURDIN, D. et al. Crystalline structure in starch. In: NAKAMURA, Y. Starch: Metabolism and structure. Japan: Springer, 2015. c. 3. LOUREIRO, A. C. et al. Estudo em alimentos cotidianos: Pesquisa de polissacar?deos atrav?s da rea??o com iodo. Brazilian Journal of Development, v. 5, n. 11, p. 24243- 24253, 2019. LUCAS, E. F.; SOARES, B. G.; MONTEIRO, E. E. C. Caracteriza??o de pol?meros: determina??o de peso molecular e an?lise t?rmica. 1 ed. Rio de Janero: E-papers Servi?os Editoriais, 2001. 366 p. LUCHESE, C. L. et al. Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloids, v. 82, p. 209? 218, 2018. LUCHESE, C. L. Desenvolvimento de embalagens biodegrad?veis a partir de amido contendo subprodutos provenientes do processamento de alimentos. 2018. 226 f. Tese (Doutorado em Engenharia Qu?mica) - Departamento de Engenharia Qu?mica, Universidade Federal do Rio Grande do Sul, Porto Alegre. MA, Q.; ZHANG, Y.; ZHONG, Q. Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT - Food Science and Technology, v. 65, p. 173?179, 2016. MACHADO, T. F. et al. Atividade antimicrobiana do ?leo essencial de manjeric?o contra pat?genos e deterioradores de alimentos. Embrapa Agroind?stria Tropical-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E), v. 67, n. 1679-6543, p. 1-16, 2012. MAJZOOBI, M. et al. Effects of L-Cysteine on some characteristics of wheat starch. Food chemistry, v. 124, n. 3, p. 795?800, 2011. MALANOVIC, N.; LOHNER, K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)- Biomembranes, v. 1858, n. 5, p. 936?946, 2016. MALHOTRA, B.; KESHWANI, A.; KHARKWAL, H. Antimicrobial food packaging: potential and pitfalls. Frontiers in Microbiology, v. 6, n. 611, p. 1-9, 2015. MALI, S.; GROSSMANN, M. V. E.; YAMASHITA, F. Filmes de amido: Produ??o, propriedades e potencial de utiliza??o. Semina:Ciencias Agrarias, v. 31, n. 1, p. 137? 156, 2010. MALLAKPOUR, S.; EZHIEH, A. N. Effect of Starch- Valine Nanocomposite on the Optical, Morphological, Thermal, and Adsorption Properties of Chitosan. Journal of Polymers and the Environment, v. 25, n. 3, p. 875?883, 2017. MANIGLIA, B. C. Elabora??o de filmes biodegrad?veis a partir do res?duo da extra??o do pigmento de C?rcuma. 2012. 144 f. Disserta??o (Mestrado em Ci?ncias) - Faculdade de Filosofia, Ci?ncia e Letras, Universidade de S?o Paulo, Ribeir?o Preto. MANIGLIA, B. C. et al. Production of active cassava starch films; effect of adding a biosurfactant or synthetic surfactant. Reactive and Functional Polymers, v. 144, p. 1- 33, 2019. MANO, E. B.; MENDES, L. C. Introdu??o a Pol?meros. 2 ed. S?o Paulo: Blucher, 1999. 208 p. MAO, J. et al. A novel gemini viscoelastic surfactant (VES) for fracturing fluids with good temperature stability. RSC Advances, v. 6, n. 91, p. 88426?88432, 2016. MARENGO, V. A.; VERCELHESE, A. E. S.; MALI, S. Comp?sitos biodegrad?veis de amido de mandioca e res?duos da agroind?stria. Qu?mica Nova, v. 36, n. 5, 2013. MART?NEZ, C.; CUEVAS, F. Evaluaci?n de la calidad culinaria y molinera del arroz. 3 ed. Cali: CIAT, 1989. 73 p. MART?NEZ, M. L. et al. Walnut (Juglans regia L.): genetic resources, chemistry, byproducts. Journal of the Science of Food and Agriculture, v. 90, n. 12, p. 1959?1967, 2010 MASINA, N. et al. A review of the chemical modification techniques of starch. Carbohydrate polymers, v. 157, p. 1226?1236, 2017. MLALILA, N. et al. Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends in Food Science & Technology, v. 74, p. 1?11, 2018. MORENO, O. et al. Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydrate Polymers, v. 178, p. 147?158, 2017. MUCILLO, R. C. S. T. Caracteriza??o e avalia??o de amido nativo e modificado de pinh?o mediante provas funcionais e t?rmicas. 2009. 156 f. Tese (Doutorado em Engenharia Qu?mica) - Departamento de Engenharia Qu?mica, Universidade Federal do Rio Grande do Sul, Porto Alegre. MURIEL-GALET, V. et al. Characterization of ethylene-vinyl alcohol copolymer containing lauril arginate (LAE) as material for active antimicrobial food packaging. Food packaging and shelf life, v. 1, n. 1, p. 10?18, 2014. MURIEL-GALET, V. et al. Ethyl Lauroyl Arginate (LAE): Usage and Potential in Antimicrobial Packaging. In: BARROS-VEL?SQUEZ, J. Antimicrobial Food Packaging. London: Academic Press, 2016. c. 24. MUZZARELLI, R. et al. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrobial agents and chemotherapy, v. 34, n. 10, p. 2019?2023, 1990. NAFCHI, A. M. et al. Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of Food Engineering, v. 113, n. 4, p. 511?519, 2012. NAKASHIMA, A. Y.; CHEVALIER, R. C.; CORTEZ-VEGA, W. R. Desenvolvimento e caracteriza??o de filmes de col?geno com adi??o de ?leo essencial de cravo-da-?ndia. Journal of bioenergy and food science, v. 3, n. 1, p. 50-57, 2016. NAKNAEN, P.; TOBKAEW, W.; CHAICHALEOM, S. Properties of jackfruit seed starch oxidized with different levels of sodium hypochlorite. International Journal of Food Properties, v. 20, n. 5, p. 979?996, 2017. NASCIMENTO, S. M. S. do. Caracteriza??o termo-?ptica de surfactantes cati?nicos. 2018. 64 f. Disserta??o (Mestrado em F?sica) - Programa de P?s-Gradua??o em F?sica, Universidade Federal de Alagoas, Macei?. NERIN, C. et al. Ethyl Lauroyl Arginate (LAE): Antimicrobial Activity and Applications in Food Systems. In: BARROS-VEL?SQUEZ, J. Antimicrobial Food Packaging. London: Academic Press, 2016. c. 23. N?BLING, S. et al. Antimicrobial effect of lauroyl arginate ethyl on Escherichia coli O157:H7 and Listeria monocytogenes on red oak leaf lettuce. European Food Research and Technology, v. 243, n. 5, p. 1?9, 2017. ODIAN, G. Principles of polymerization. 4 ed. New Jersey: John Wiley & Sons. 2004. 848 p. OIRERE, E. K. et al. Phytochemical analysis of N-hexane leaf extract of Alpinia purpurata (Vieill.) K. Schum using Uv-Vis, FTIR and GC-MS. International Journal of Pharmacy and Pharmaceutical Sciences, v. 7, n. 8, p. 1-3, 2015. OLIVEIRA, A. S. B. de; MELO, N. R. de. Market and sustainability of food packaging: A review. Boletim Centro de Pesquisa de Processamento de Alimentos, v. 36, n. 1, p. 1-10, 2018. OLUWASINA, O. O. et al. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. International Journal of Biological Macromolecules, v. 135, p. 282?293, 2019. ORDO?EZ, J. A. et al. Tecnologia de alimentos: componentes dos alimentos e processos. v. 1. Porto Alegre: Artmed, 2005. 294 p. OSELIERO FILHO, P. L. Estudo estrutural e termodin?mico de sistemas autoorganizados: Micelas em solu??o. 2013. 132 f. Disserta??o (Mestrado em Ci?ncias) - Instituto de F?sica - Departamento de f?sica experimental, Universidade de S?o Paulo, S?o Paulo. OCHOA, T. A. et al. Design and characterization of corn starch edible films including beeswax and natural antimicrobials. Food and bioprocess technology, v. 10, n. 1, p. 103?114, 2017. OTONI, C. G. et al. Trends in food antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, v. 83, p. 60-73, 2016. OYEYINKA, S. A. et al. Physicochemical properties of starches with variable amylose contents extracted from bambara groundnut genotypes. Carbohydrate polymers, v. 133, p. 171?178, 2015. OZDEMIR, M.; FLOROS, J. D. Active food packaging technologies. Food Science and Nutrition, v. 44, n. 3, p. 185-193, 2004. PAOLI, M. A. Degrada??o e estabiliza??o de pol?meros. 1 ed. S?o Paulo: Artliber, 2009. 286 p. PEREIRA, J. M. Oxida??o do amido de milho com hipoclorito de s?dio e per?xido de hidrog?nio. 2014. 47 f. Trabalho de Conclus?o de Curso (Gradua??o em Engenharia de Alimentos) - Coordena??o de Tecnologia e E
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Ci?ncia e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/6195/4/2020+-+Joyce+Fagundes+Gomes+Motta.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/6195/3/2020+-+Joyce+Fagundes+Gomes+Motta.pdf.txt
http://localhost:8080/tede/bitstream/jspui/6195/2/2020+-+Joyce+Fagundes+Gomes+Motta.pdf
http://localhost:8080/tede/bitstream/jspui/6195/1/license.txt
bitstream.checksum.fl_str_mv f1de3d516651f696c4451392aabcc206
d02df9a72e67f7764d98a7b325a29236
efb6bea5e97d9f256035703874c328d8
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220383087132672