Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Bastos, L?via Pinto Heckert lattes
Orientador(a): Rojas, Edwin Elard Garcia
Banca de defesa: Finotelli, Priscilla Vanessa, Sabino, Silvio Jos?, Machado, Mariana Teixeira da Costa, Vicente, Juarez
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Ci?ncia e Tecnologia de Alimentos
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/5319
Resumo: The black pepper (Piper nigrum L.) essential oil (EO) is a rich source of biologically active compounds (e.g.terpenes) and your applicability as a food additive has been the subject of several studies due to the antimicrobial and antioxidant activity of these compounds. Terpenes, however, are volatile and when exposed to certain conditions (high temperatures, light, low pH and gastrointestinal fluids) can reduce their biological potential and, in this sense, microencapsulation is an alternative way to the conserve EOs properties and their components. Among the microencapsulation methods, the complex coacervation method has advantages such as low concentrations of the wall materials, high encapsulation efficiency, and a variety of biopolymers that can be applied as wall materials. The aim of the present study was to characterize and evaluate the stability of black pepper EO encapsulated by complex coacervation using different biopolymers wall materials. The biopolymers and cross-linking agents used were effective in the protection of the EO, presented high encapsulation efficiency and preserved their main terpenes. Capsules formed by lactoferrin/sodium alginate and ?-lactoglobulin/sodium alginate preserved the EO when exposed to simulated oral and gastric conditions in vitro. In simulated aqueous foods, the EO release was lower from ?-lactoglobulin/sodium alginate microcapsules, and the EO release was by Fickian diffusion according to the Rigger-Peppas model. The obtained results suggest that the wall materials used were efficient and could be applied to encapsulate new active ingredients.
id UFRRJ-1_a3294786a222914601cde553a27107d1
oai_identifier_str oai:localhost:jspui/5319
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Rojas, Edwin Elard GarciaCPF: 014.548.996-54Finotelli, Priscilla VanessaSabino, Silvio Jos?Machado, Mariana Teixeira da CostaVicente, JuarezCPF: 122.476.067-09http://lattes.cnpq.br/1578379346432268Bastos, L?via Pinto Heckert2022-01-15T23:54:18Z2019-09-10BASTOS, L?via Pinto Heckert. Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede. 2019. 178 f]. Tese (Doutorado em Ci?ncia e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.https://tede.ufrrj.br/jspui/handle/jspui/5319The black pepper (Piper nigrum L.) essential oil (EO) is a rich source of biologically active compounds (e.g.terpenes) and your applicability as a food additive has been the subject of several studies due to the antimicrobial and antioxidant activity of these compounds. Terpenes, however, are volatile and when exposed to certain conditions (high temperatures, light, low pH and gastrointestinal fluids) can reduce their biological potential and, in this sense, microencapsulation is an alternative way to the conserve EOs properties and their components. Among the microencapsulation methods, the complex coacervation method has advantages such as low concentrations of the wall materials, high encapsulation efficiency, and a variety of biopolymers that can be applied as wall materials. The aim of the present study was to characterize and evaluate the stability of black pepper EO encapsulated by complex coacervation using different biopolymers wall materials. The biopolymers and cross-linking agents used were effective in the protection of the EO, presented high encapsulation efficiency and preserved their main terpenes. Capsules formed by lactoferrin/sodium alginate and ?-lactoglobulin/sodium alginate preserved the EO when exposed to simulated oral and gastric conditions in vitro. In simulated aqueous foods, the EO release was lower from ?-lactoglobulin/sodium alginate microcapsules, and the EO release was by Fickian diffusion according to the Rigger-Peppas model. The obtained results suggest that the wall materials used were efficient and could be applied to encapsulate new active ingredients.O ?leo essencial (OE) de pimenta preta (Piper nigrum L.) ? rico em compostos ativos como os terpenos, sendo sua aplica??o como aditivo alimentar alvo de pesquisas, devido as suas atividades antimicrobianas e antioxidantes. Os terpenos, entretanto, s?o vol?teis e quando expostos a certas condi??es (oxig?nio, altas temperaturas, luz, baixos pHs, fluidos gastrointestinais) podem ter o seu potencial biol?gico reduzido e, nesse sentido, a microencapsula??o ? uma alternativa na prote??o dos OE e seus componentes. Dentre os m?todos de microencapsula??o, a coacerva??o complexa apresenta vantagens como baixa concentra??o de materiais de parede, elevada efici?ncia de encapsula??o, e uma variedade de biopol?meros que podem ser utilizados como materiais de parede. O objetivo deste trabalho foi caracterizar e avaliar a estabilidade do OE de pimenta preta (Piper nigrum L.) e de suas c?psulas formadas por diferentes biopol?meros pela t?cnica de coacerva??o complexa.Os biopol?meros e agentes reticulantes utilizados foram eficazes na prote??o do OE apresentando elevada efici?ncia de encapsula??o, preservando os principais terpenos no OE encapsulado. Adicionalmente, as c?psulas fabricadas com lactoferrina/alginato de s?dio e ?-lactoglobulina/alginato de s?dio preservaram o OE quando expostos a condi??o oral e g?strica simuladas in vitro. Nas c?psulas produzidas pelo sistema ?-lactoglobulina/alginato de s?dio foi avaliada a libera??o do ?leo essencial em diferentes matrizes aliment?cias simuladas, em matrizes aliment?cias aquosas, ocorreu baixa libera??o do OE, e sua libera??o foi por difus?o Fickian de acordo com modelo Rigger-Peppas. Os resultados obtidos sugerem que os materiais de parede utilizados foram eficientes e podem ser utilizados para encapsular novos ingredientes ativos.Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-01-15T23:54:17Z No. of bitstreams: 1 2019 - L?via Pinto Heckert Bastos.pdf: 2797395 bytes, checksum: ce97274f9550ecd8b91fe22fcc5c1604 (MD5)Made available in DSpace on 2022-01-15T23:54:18Z (GMT). No. of bitstreams: 1 2019 - L?via Pinto Heckert Bastos.pdf: 2797395 bytes, checksum: ce97274f9550ecd8b91fe22fcc5c1604 (MD5) Previous issue date: 2019-09-10CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/67882/2019%20-%20L%c3%advia%20Pinto%20Heckert%20Bastos.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Ci?ncia e Tecnologia de AlimentosUFRRJBrasilInstituto de TecnologiaAbrahamsson, B., Pal, A., Sjoberg, M., Carlsson, M., Laurell, E., Brasseur, J. G. (2005). A novel in vitro and numerical analysis of shear-induced drug release from extended release tablets in the fed stomach. Pharmaceutical Research, 22, 1215?1226. Ahmad, N., Fazal, H., Abbasi, B. H., Farooq, S., Ali, M., & Khan, M. A. (2012). Biological role of Piper nigrum L.(Black pepper): A review. Asian Pacific Journal of Tropical Biomedicine, 2(3), 1945-1953. Alizadeh-Sani, M., Khezerlou, A., &Ehsani, A. (2018).Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Industrial crops and products, 124, 300-315. Atay, E.,Fabra, M. J., Mart?nez-Sanz, M., Gomez-Mascaraque, L. G., Altan, A., & Lopez-Rubio, A. (2018). Development and characterization of chitosan/gelatin electrosprayedmicroparticles as food grade delivery vehicles for anthocyanin extracts. Food Hydrocolloids, 77, 699-710. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. (2008).Biological effects of essential oils ? a review.Food and Chemical Toxicology, 46, 446?475. Bao, C., Jiang, P., Chai, J., Jiang, Y., Dan, L., Bao, W.Yuan, L. (2019). The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food research international, 120,130-140. Bastos, L. P. H., De Carvalho, C. W. P., & Garcia-Rojas, E. E. (2018). Formation and characterization of the complex coacervates obtained between lactoferrin and sodium alginate. International journal of biological macromolecules, 120, p.332-338. Bhattacharjee, N., Banerjee, S., &Dutta, S. K. (2014).Cloning, expression and mutational studies of a trypsin inhibitor that retains activity even after cyanogen bromide digestion. Protein expression and purification, 96, 26-31. Bokkhim, H., Bansal, N., Gr?ndahl, L., &Bhandari, B. (2015). Interactions between differentforms of bovine lactoferrin and sodium alginate affect the properties of their mixtures. Food Hydrocolloids, 48, 38?46. Bustos, C., O., R. Alberti, R.,V., S., Matiacevich, B., S. (2016). Edible antimicrobial films based on microencapsulated lemongrass oil.Journal of food science and technology, 53, 832-839. Chandran, J., Nayana, N., Roshini, N., &Nisha, P. (2017). Oxidative stability, thermal stability and acceptability of coconut oil flavored with essential oils from black pepper and ginger. Journal of food science and technology, 54(1), 144-152. Chanphai, P., &Tajmir-Riahi, H. A. (2017). Trypsin and trypsin inhibitor bind milk beta-lactoglobulin: Protein?protein interactions and morphology. International journal of biological macromolecules, 96, 754-758. Chater, P. I., Wilcox, M. D., Brownlee, I. A., & Pearson, J. P. (2015).Alginate as aprotease inhibitor in vitro and in a model gut system; selective inhibition of pepsin but not trypsin.Carbohydrate Polymers, 131, 142?151. Commission regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. 2011. 10/2011/EC. Cort?s-Camargo, S., Acu?a-Avila, P. E., Rodr?guez-Huezo, M. E., Rom?n-Guerrero, A., Varela-Guerrero, V. P?rez-Alonso, C. (2019). Effect of chia mucilage addition on oxidation and release kinetics of lemon essential oil microencapsulated using mesquite gum?Chia mucilage mixtures. Food research international, 116, 1010-1019. Da Cruz, M. C. R., Dagostin, J. L. A., Perussello, C. A., &Masson, M. L. (2019). Assessment of physicochemical characteristics, thermal stability and release profile of ascorbic acid microcapsules obtained by complex coacervation.Food hydrocolloids, 87, 71-82. Dash, S., Murthy, P. N., Nath, L.Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta PolPharm, 67(3), 217-23. Da Silva Stefani, F., de Campo, C., Paese, K., Guterres, S. S., Costa, T. M. H.Fl?res, S. H. (2019). Nanoencapsulation of linseed oil with chia mucilage as structuring material: Characterization, stability and enrichment of orange juice. Food Research International, 120, 872-879. De Matos, E. F., Scopel, B. S., &Dettmer, A. (2018).Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate.Journal of Environmental Chemical Engineering, 6(2), 1989-1994. Dima, C., P?tra?cu, L., Cantaragiu, A., Alexe, P., &Dima, ?. (2016). The kinetics of the swelling process and the release mechanisms of Coriandrumsativum L. essential oil from chitosan/alginate/inulin microcapsules.Food chemistry, 195, 39-48. Dong, A., Matsuura, J., Allison, S. D., Chrisman, E., Manning, M. C., & Carpenter, J. F. (1996).Infrared and circular dichroism spectroscopic characterization of structural differences between ?-lactoglobulin A and B. Biochemistry, 35(5), 1450-1457. El-Houssiny, A. S., Ward, A. A., Mostafa, D. M., Abd-El-Messieh, S. L., Abdel-Nour, K. N., Darwish, M. M. Khalil, W. A. (2016). Drug?polymer interaction between glucosamine sulfate and alginate nanoparticles: FTIR, DSC and dielectric spectroscopy studies. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(2), 025014. Gaonkar, A. G; Vasisht, N; Khare, A. R; Sobel, R. Microencapsulation in the food industry: a practical implementation guide. San Diego: Elsevier, 2014. Ghasemi, S.,Jafari, S. M., Assadpour, E. Khomeiri, M. (2017).Production of pectin-whey protein nano-complexes as carriers of orange peel oil.Carbohydrate polymers, 177, 369-377. Girardi, N. S., Garc?a, D., Passone, M. A., Nesci, A.,Etcheverry, M. (2017).Microencapsulation of Lippiaturbinata essential oil and its impact on peanut seed quality preservation. International Biodeterioration & Biodegradation, 116, 227-233. Gunasekaran, S., Ko, S., & Xiao, L. (2007). Use of whey proteins for encapsulationand controlled delivery applications. Journal of Food Engineering, 83, 31-40. Hedstrom, L. (2002).Serine protease mechanism and specificity.Chemical Reviews,102(12),4501-4524. Huang, C.Y. Balakrishnan, G. Spiro, T. G.(2006).Protein secondary structurefrom deep-UV resonance Raman spectroscopy, Journal of Raman Spectroscopy 37, 277-282. Ilyasoglu, H., & El, S. N. (2014). Nanoencapsulation of EPA/DHA with sodium caseinate?gum arabic complex and its usage in the enrichment of fruit juice. LWT-Food Science and Technology, 56(2), 461-468. Jones, O. G., Decker, E. A., &McClements, D. J. (2010). Comparison of protein?polysaccharide nanoparticle fabrication methods: Impact of biopolymer complexation before or after particle formation. Journal of Colloid and Interface Science, 344(1), 21-29. Koupantsis, T., Pavlidou, E.,Paraskevopoulou, A. (2014). Flavour encapsulation in milk proteins?CMC coacervate-type complexes. Food Hydrocolloids, 37, 134-142. Koupantsis, T., Pavlidou, E. Paraskevopoulou, A. (2016).Glycerol and tannic acid as applied in the preparation of milk proteins?CMC complex coavervates for flavour encapsulation. Food Hydrocolloids, 57, 62-71. Li, D., Wu, H., Huang, W., Guo, L. Dou, H. (2018). Microcapsule of Sweet Orange Essential Oil Encapsulated in Beta?Cyclodextrin Improves the Release Behaviors In Vitro and In Vivo. European journal of lipid science and technology, 120(9), 1-11. Lv,Y., Yang, F., Li, X., Zhang, X. Abbas, S. (2014). Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocolloids, 35, 305-314. Manaf, M. A., Subuki, I., Jai, J., Raslan, R.Mustapa, A. N. (2018). Encapsulation of volatile citronella essential oil by coacervation: efficiency and release study. In IOP conference series: materials science and engineering, 358 (1), 1-7. Maderuelo, C., Zarzuelo, A. Lanao, J. M. (2011). Critical factors in the release of drugs from sustained release hydrophilic matrices. Journal of controlled release, 154(1), 2-19. McClements, D. J. (2015). Nanoparticle- and microparticle-based delivery systems (1st ed).Boca Raton: CRC Press. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T. O. R. S. T. E. N., Bourlieu, C., &Dufour, C. (2014).A standardised static in vitro digestion method suitable for food?an international consensus. Food&function, 5(6), 1113-1124. Montero, P., Calvo, M. M., G?mez-Guill?n, M. C. G?mez-Estaca, J. (2016). Microcapsules containing astaxanthin from shrimp waste as potential food coloring and functional ingredient: Characterization, stability, and bioaccessibility. LWT-Food Science and Technology, 70, 229-236. Nesterenko, A., Alric, I., Violleau, F., Silvestre, F. Durrieu, V. (2014).The effect of vegetable protein modifications on the microencapsulation process.Food Hydrocolloids, 41, 95-102. Nicolai, T., Britten, M., & Schmitt, C. (2011).?-Lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocolloids, 25(8), 1945-1962. Papillo, V. A., Arlorio, M., Locatelli, M., Fuso, L., Pellegrini, N. Fogliano, V. (2019).In vitro evaluation of gastro-intestinal digestion and colonic biotransformation of curcuminoids considering different formulations and food matrices. Journal of Functional Foods, 59, 156-163. Peng, C., Zhao, S. Q., Zhang, J., Huang, G. Y., Chen, L. Y., & Zhao, F. Y. (2014). Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapisalba) seed essential oil by complex coacervation. Food chemistry, 165, 560-568. Powers,J.C.,Harley,A.D.,&Myers,D.V.(1977). Subsite specificity of porcinepepsin.Advances in Experimental Medicine and Biology,95,141?157. Raksa, A., Sawaddee, P., Raksa, P. Aldred, A. K. (2017). Microencapsulation, chemical characterization, and antibacterial activity of Citrus hystrix DC (Kaffir Lime) peel essential oil. Monatsheftef?rChemie-Chemical Monthly,148(7), 1229-1234. Rezaeinia, H., Ghorani, B., Emadzadeh, B. Tucker, N. (2019). Electrohydrodynamic atomization of Balangu (Lallemantiaroyleana) seed gum for the fast-release of Menthalongifolia L. essential oil: Characterization of nano-capsules and modeling the kinetics of release. FoodHydrocolloids, 93, 374-385. Ritger, P. L., &Peppas, N. A. (1987).A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of controlled release, 5(1), 23-36. Rojas-Moreno, S., Osorio-Revilla, G., Gallardo-Vel?zquez, T., C?rdenas-Bail?n, F., &Meza-M?rquez, G. (2018).Effect of the cross-linking agent and drying method on encapsulation efficiency of orange essential oil by complex coacervation using whey protein isolate with different polysaccharides. Journal of microencapsulation, 35(2), 165-180. Saha, K. C., Seal, H. P., & Noor, M. A. (2013). Isolation and characterization of piperine from the fruits of black pepper (Piper nigrum). Journal of the Bangladesh Agricultural University, 11, 11-16. Schmitt, C. Turgeon, S. L. (2011). Protein/polysaccharide complexes and coacervatesin food systems.Advances in Colloid and Interface Science 167, 63-70. Strugala,V.,Kennington,E.J.,Campbell,R.J.,Skjak-Braek, G.Dettmar, P.W. (2005). Inhibition of pepsin activity by alginates in vitro and the effect of epimerization. International Journal of Pharmaceutics, 304 (1?2), 40?50. Sunderland, A. M., Dettmar, P. W. Pearson, J. P. (2000). Alginates inhibit pepsin activity in vitro; a justification for their use in gastro-oesophageal reflux disease (GORD). Gastroenterology, 118(4), A21. Timilsena, Y. P. Wang, B. Adhikari, R. Adhikari, B. (2016). Preparation and characterization of chiaseed protein isolate?chia seed gum complex coacervates, Food hydrocolloids, 52, 554-563. Timilsena, Y. P., Adhikari, R., Barrow, C. J.Adhikari, B. (2017).Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates.Food hydrocolloids, 66, 71-81. Tom?, D. Debabbi, H. (1998).Physiological effects of milk proteincomponents. International Dairy Journal, 8, 383?392. Wang, L., Yang, S., Cao, J., Zhao, S., & Wang, W. (2016). Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex.Chemical and Pharmaceutical Bulletin, 64(1), 21-26. Wang, B., Blanch, E., Barrow, C. J., &Adhikari, B. (2017). Preparation and study of digestion behavior of lactoferrin-sodium alginate complex coacervates.Journal of functional foods, 37, 97-106. Voli?, M., Paji?-Lijakovi?, I., Djordjevi?, V., Kne?evi?-Jugovi?, Z., Pe?inar, I., Stevanovi?-Daji?, Z.Bugarski, B. (2018).Alginate/soy protein system for essential oil encapsulation with intestinal delivery.Carbohydratepolymers, 200, 15-24. Xiao, Z., Liu, W., Zhu, G., Zhou, R. Niu, Y. (2014). Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour and fragrance journal, 29 (3), 166-172. Xu, H., Lu, Y., Zhang, T., Liu, K., Liu, L., He, Z., Wu, X. (2019).Characterization of binding interactions of anthraquinones and bovine ?-lactoglobulin. Food chemistry, 281, 28-35. Yao, K., Chen, W., Song, F., McClements, D. J. Hu, K. (2018). Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcuminbioaccessibility and antioxidant capacity under simulated gastrointestinal conditions.Food hydrocolloids,79, 262-272. Ye, Q., Georges, N. Selomulya, C. (2018). Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends in food science & technology, 78, 167-179. Yuan, Y., Li, M. F., Chen, W. S., Zeng, Q. Z., Su, D. X., Tian, B., & He, S. (2018). Microencapsulation of shiitake (Lentinulaedodes) essential oil by complex coacervation: formation, rheological property, oxidative stability and odour attenuation effect. International Journal of Food Science & Technology, 53(7), 1681-1688. Zhang, K., Zhang, H., Hu, X., Bao, S. Huang, H. (2012).Synthesis and release studies of microalgal oil-containing microcapsules prepared by complex coacervation.Colloids and surfaces B: Biointerfaces, 89, 61-66. Zhang, Z., Zhang, R.McClements, D. J. (2016). Encapsulation of ?-carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocolloids,61, 1-10.biopol?merosprote?nas do soro do leiteintera??o eletrost?ticaterpenosefici?ncia de encapsula??oestabilidade t?rmicabiopolymerswhey proteinselectrostatic interactionterpenesencapsulation efficiencythermal stabilityCi?ncia e Tecnologia de AlimentosEncapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de paredeEncapsulation of the black pepper (Piper nigrum L.) essential oil by complex coacervation using proteins and sodium alginate as wall materialsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - L?via Pinto Heckert Bastos.pdf.jpg2019 - L?via Pinto Heckert Bastos.pdf.jpgimage/jpeg1943http://localhost:8080/tede/bitstream/jspui/5319/4/2019+-+L%C3%ADvia+Pinto+Heckert+Bastos.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD54TEXT2019 - L?via Pinto Heckert Bastos.pdf.txt2019 - L?via Pinto Heckert Bastos.pdf.txttext/plain336008http://localhost:8080/tede/bitstream/jspui/5319/3/2019+-+L%C3%ADvia+Pinto+Heckert+Bastos.pdf.txt1449f3b4c7d7a92d3dbfee9757a39646MD53ORIGINAL2019 - L?via Pinto Heckert Bastos.pdf2019 - L?via Pinto Heckert Bastos.pdfapplication/pdf2797395http://localhost:8080/tede/bitstream/jspui/5319/2/2019+-+L%C3%ADvia+Pinto+Heckert+Bastos.pdfce97274f9550ecd8b91fe22fcc5c1604MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/5319/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/53192022-01-16 02:00:16.564oai:localhost:jspui/5319Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-01-16T04:00:16Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede
dc.title.alternative.eng.fl_str_mv Encapsulation of the black pepper (Piper nigrum L.) essential oil by complex coacervation using proteins and sodium alginate as wall materials
title Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede
spellingShingle Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede
Bastos, L?via Pinto Heckert
biopol?meros
prote?nas do soro do leite
intera??o eletrost?tica
terpenos
efici?ncia de encapsula??o
estabilidade t?rmica
biopolymers
whey proteins
electrostatic interaction
terpenes
encapsulation efficiency
thermal stability
Ci?ncia e Tecnologia de Alimentos
title_short Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede
title_full Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede
title_fullStr Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede
title_full_unstemmed Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede
title_sort Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede
author Bastos, L?via Pinto Heckert
author_facet Bastos, L?via Pinto Heckert
author_role author
dc.contributor.advisor1.fl_str_mv Rojas, Edwin Elard Garcia
dc.contributor.advisor1ID.fl_str_mv CPF: 014.548.996-54
dc.contributor.referee1.fl_str_mv Finotelli, Priscilla Vanessa
dc.contributor.referee2.fl_str_mv Sabino, Silvio Jos?
dc.contributor.referee3.fl_str_mv Machado, Mariana Teixeira da Costa
dc.contributor.referee4.fl_str_mv Vicente, Juarez
dc.contributor.authorID.fl_str_mv CPF: 122.476.067-09
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1578379346432268
dc.contributor.author.fl_str_mv Bastos, L?via Pinto Heckert
contributor_str_mv Rojas, Edwin Elard Garcia
Finotelli, Priscilla Vanessa
Sabino, Silvio Jos?
Machado, Mariana Teixeira da Costa
Vicente, Juarez
dc.subject.por.fl_str_mv biopol?meros
prote?nas do soro do leite
intera??o eletrost?tica
terpenos
efici?ncia de encapsula??o
estabilidade t?rmica
topic biopol?meros
prote?nas do soro do leite
intera??o eletrost?tica
terpenos
efici?ncia de encapsula??o
estabilidade t?rmica
biopolymers
whey proteins
electrostatic interaction
terpenes
encapsulation efficiency
thermal stability
Ci?ncia e Tecnologia de Alimentos
dc.subject.eng.fl_str_mv biopolymers
whey proteins
electrostatic interaction
terpenes
encapsulation efficiency
thermal stability
dc.subject.cnpq.fl_str_mv Ci?ncia e Tecnologia de Alimentos
description The black pepper (Piper nigrum L.) essential oil (EO) is a rich source of biologically active compounds (e.g.terpenes) and your applicability as a food additive has been the subject of several studies due to the antimicrobial and antioxidant activity of these compounds. Terpenes, however, are volatile and when exposed to certain conditions (high temperatures, light, low pH and gastrointestinal fluids) can reduce their biological potential and, in this sense, microencapsulation is an alternative way to the conserve EOs properties and their components. Among the microencapsulation methods, the complex coacervation method has advantages such as low concentrations of the wall materials, high encapsulation efficiency, and a variety of biopolymers that can be applied as wall materials. The aim of the present study was to characterize and evaluate the stability of black pepper EO encapsulated by complex coacervation using different biopolymers wall materials. The biopolymers and cross-linking agents used were effective in the protection of the EO, presented high encapsulation efficiency and preserved their main terpenes. Capsules formed by lactoferrin/sodium alginate and ?-lactoglobulin/sodium alginate preserved the EO when exposed to simulated oral and gastric conditions in vitro. In simulated aqueous foods, the EO release was lower from ?-lactoglobulin/sodium alginate microcapsules, and the EO release was by Fickian diffusion according to the Rigger-Peppas model. The obtained results suggest that the wall materials used were efficient and could be applied to encapsulate new active ingredients.
publishDate 2019
dc.date.issued.fl_str_mv 2019-09-10
dc.date.accessioned.fl_str_mv 2022-01-15T23:54:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BASTOS, L?via Pinto Heckert. Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede. 2019. 178 f]. Tese (Doutorado em Ci?ncia e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/5319
identifier_str_mv BASTOS, L?via Pinto Heckert. Encapsula??o do ?leo essencial de pimenta preta (Piper nigrum L.) por coacerva??o complexa, utilizando prote?nas e alginato de s?dio como materiais de parede. 2019. 178 f]. Tese (Doutorado em Ci?ncia e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.
url https://tede.ufrrj.br/jspui/handle/jspui/5319
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv Abrahamsson, B., Pal, A., Sjoberg, M., Carlsson, M., Laurell, E., Brasseur, J. G. (2005). A novel in vitro and numerical analysis of shear-induced drug release from extended release tablets in the fed stomach. Pharmaceutical Research, 22, 1215?1226. Ahmad, N., Fazal, H., Abbasi, B. H., Farooq, S., Ali, M., & Khan, M. A. (2012). Biological role of Piper nigrum L.(Black pepper): A review. Asian Pacific Journal of Tropical Biomedicine, 2(3), 1945-1953. Alizadeh-Sani, M., Khezerlou, A., &Ehsani, A. (2018).Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Industrial crops and products, 124, 300-315. Atay, E.,Fabra, M. J., Mart?nez-Sanz, M., Gomez-Mascaraque, L. G., Altan, A., & Lopez-Rubio, A. (2018). Development and characterization of chitosan/gelatin electrosprayedmicroparticles as food grade delivery vehicles for anthocyanin extracts. Food Hydrocolloids, 77, 699-710. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. (2008).Biological effects of essential oils ? a review.Food and Chemical Toxicology, 46, 446?475. Bao, C., Jiang, P., Chai, J., Jiang, Y., Dan, L., Bao, W.Yuan, L. (2019). The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food research international, 120,130-140. Bastos, L. P. H., De Carvalho, C. W. P., & Garcia-Rojas, E. E. (2018). Formation and characterization of the complex coacervates obtained between lactoferrin and sodium alginate. International journal of biological macromolecules, 120, p.332-338. Bhattacharjee, N., Banerjee, S., &Dutta, S. K. (2014).Cloning, expression and mutational studies of a trypsin inhibitor that retains activity even after cyanogen bromide digestion. Protein expression and purification, 96, 26-31. Bokkhim, H., Bansal, N., Gr?ndahl, L., &Bhandari, B. (2015). Interactions between differentforms of bovine lactoferrin and sodium alginate affect the properties of their mixtures. Food Hydrocolloids, 48, 38?46. Bustos, C., O., R. Alberti, R.,V., S., Matiacevich, B., S. (2016). Edible antimicrobial films based on microencapsulated lemongrass oil.Journal of food science and technology, 53, 832-839. Chandran, J., Nayana, N., Roshini, N., &Nisha, P. (2017). Oxidative stability, thermal stability and acceptability of coconut oil flavored with essential oils from black pepper and ginger. Journal of food science and technology, 54(1), 144-152. Chanphai, P., &Tajmir-Riahi, H. A. (2017). Trypsin and trypsin inhibitor bind milk beta-lactoglobulin: Protein?protein interactions and morphology. International journal of biological macromolecules, 96, 754-758. Chater, P. I., Wilcox, M. D., Brownlee, I. A., & Pearson, J. P. (2015).Alginate as aprotease inhibitor in vitro and in a model gut system; selective inhibition of pepsin but not trypsin.Carbohydrate Polymers, 131, 142?151. Commission regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. 2011. 10/2011/EC. Cort?s-Camargo, S., Acu?a-Avila, P. E., Rodr?guez-Huezo, M. E., Rom?n-Guerrero, A., Varela-Guerrero, V. P?rez-Alonso, C. (2019). Effect of chia mucilage addition on oxidation and release kinetics of lemon essential oil microencapsulated using mesquite gum?Chia mucilage mixtures. Food research international, 116, 1010-1019. Da Cruz, M. C. R., Dagostin, J. L. A., Perussello, C. A., &Masson, M. L. (2019). Assessment of physicochemical characteristics, thermal stability and release profile of ascorbic acid microcapsules obtained by complex coacervation.Food hydrocolloids, 87, 71-82. Dash, S., Murthy, P. N., Nath, L.Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta PolPharm, 67(3), 217-23. Da Silva Stefani, F., de Campo, C., Paese, K., Guterres, S. S., Costa, T. M. H.Fl?res, S. H. (2019). Nanoencapsulation of linseed oil with chia mucilage as structuring material: Characterization, stability and enrichment of orange juice. Food Research International, 120, 872-879. De Matos, E. F., Scopel, B. S., &Dettmer, A. (2018).Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate.Journal of Environmental Chemical Engineering, 6(2), 1989-1994. Dima, C., P?tra?cu, L., Cantaragiu, A., Alexe, P., &Dima, ?. (2016). The kinetics of the swelling process and the release mechanisms of Coriandrumsativum L. essential oil from chitosan/alginate/inulin microcapsules.Food chemistry, 195, 39-48. Dong, A., Matsuura, J., Allison, S. D., Chrisman, E., Manning, M. C., & Carpenter, J. F. (1996).Infrared and circular dichroism spectroscopic characterization of structural differences between ?-lactoglobulin A and B. Biochemistry, 35(5), 1450-1457. El-Houssiny, A. S., Ward, A. A., Mostafa, D. M., Abd-El-Messieh, S. L., Abdel-Nour, K. N., Darwish, M. M. Khalil, W. A. (2016). Drug?polymer interaction between glucosamine sulfate and alginate nanoparticles: FTIR, DSC and dielectric spectroscopy studies. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(2), 025014. Gaonkar, A. G; Vasisht, N; Khare, A. R; Sobel, R. Microencapsulation in the food industry: a practical implementation guide. San Diego: Elsevier, 2014. Ghasemi, S.,Jafari, S. M., Assadpour, E. Khomeiri, M. (2017).Production of pectin-whey protein nano-complexes as carriers of orange peel oil.Carbohydrate polymers, 177, 369-377. Girardi, N. S., Garc?a, D., Passone, M. A., Nesci, A.,Etcheverry, M. (2017).Microencapsulation of Lippiaturbinata essential oil and its impact on peanut seed quality preservation. International Biodeterioration & Biodegradation, 116, 227-233. Gunasekaran, S., Ko, S., & Xiao, L. (2007). Use of whey proteins for encapsulationand controlled delivery applications. Journal of Food Engineering, 83, 31-40. Hedstrom, L. (2002).Serine protease mechanism and specificity.Chemical Reviews,102(12),4501-4524. Huang, C.Y. Balakrishnan, G. Spiro, T. G.(2006).Protein secondary structurefrom deep-UV resonance Raman spectroscopy, Journal of Raman Spectroscopy 37, 277-282. Ilyasoglu, H., & El, S. N. (2014). Nanoencapsulation of EPA/DHA with sodium caseinate?gum arabic complex and its usage in the enrichment of fruit juice. LWT-Food Science and Technology, 56(2), 461-468. Jones, O. G., Decker, E. A., &McClements, D. J. (2010). Comparison of protein?polysaccharide nanoparticle fabrication methods: Impact of biopolymer complexation before or after particle formation. Journal of Colloid and Interface Science, 344(1), 21-29. Koupantsis, T., Pavlidou, E.,Paraskevopoulou, A. (2014). Flavour encapsulation in milk proteins?CMC coacervate-type complexes. Food Hydrocolloids, 37, 134-142. Koupantsis, T., Pavlidou, E. Paraskevopoulou, A. (2016).Glycerol and tannic acid as applied in the preparation of milk proteins?CMC complex coavervates for flavour encapsulation. Food Hydrocolloids, 57, 62-71. Li, D., Wu, H., Huang, W., Guo, L. Dou, H. (2018). Microcapsule of Sweet Orange Essential Oil Encapsulated in Beta?Cyclodextrin Improves the Release Behaviors In Vitro and In Vivo. European journal of lipid science and technology, 120(9), 1-11. Lv,Y., Yang, F., Li, X., Zhang, X. Abbas, S. (2014). Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocolloids, 35, 305-314. Manaf, M. A., Subuki, I., Jai, J., Raslan, R.Mustapa, A. N. (2018). Encapsulation of volatile citronella essential oil by coacervation: efficiency and release study. In IOP conference series: materials science and engineering, 358 (1), 1-7. Maderuelo, C., Zarzuelo, A. Lanao, J. M. (2011). Critical factors in the release of drugs from sustained release hydrophilic matrices. Journal of controlled release, 154(1), 2-19. McClements, D. J. (2015). Nanoparticle- and microparticle-based delivery systems (1st ed).Boca Raton: CRC Press. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T. O. R. S. T. E. N., Bourlieu, C., &Dufour, C. (2014).A standardised static in vitro digestion method suitable for food?an international consensus. Food&function, 5(6), 1113-1124. Montero, P., Calvo, M. M., G?mez-Guill?n, M. C. G?mez-Estaca, J. (2016). Microcapsules containing astaxanthin from shrimp waste as potential food coloring and functional ingredient: Characterization, stability, and bioaccessibility. LWT-Food Science and Technology, 70, 229-236. Nesterenko, A., Alric, I., Violleau, F., Silvestre, F. Durrieu, V. (2014).The effect of vegetable protein modifications on the microencapsulation process.Food Hydrocolloids, 41, 95-102. Nicolai, T., Britten, M., & Schmitt, C. (2011).?-Lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocolloids, 25(8), 1945-1962. Papillo, V. A., Arlorio, M., Locatelli, M., Fuso, L., Pellegrini, N. Fogliano, V. (2019).In vitro evaluation of gastro-intestinal digestion and colonic biotransformation of curcuminoids considering different formulations and food matrices. Journal of Functional Foods, 59, 156-163. Peng, C., Zhao, S. Q., Zhang, J., Huang, G. Y., Chen, L. Y., & Zhao, F. Y. (2014). Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapisalba) seed essential oil by complex coacervation. Food chemistry, 165, 560-568. Powers,J.C.,Harley,A.D.,&Myers,D.V.(1977). Subsite specificity of porcinepepsin.Advances in Experimental Medicine and Biology,95,141?157. Raksa, A., Sawaddee, P., Raksa, P. Aldred, A. K. (2017). Microencapsulation, chemical characterization, and antibacterial activity of Citrus hystrix DC (Kaffir Lime) peel essential oil. Monatsheftef?rChemie-Chemical Monthly,148(7), 1229-1234. Rezaeinia, H., Ghorani, B., Emadzadeh, B. Tucker, N. (2019). Electrohydrodynamic atomization of Balangu (Lallemantiaroyleana) seed gum for the fast-release of Menthalongifolia L. essential oil: Characterization of nano-capsules and modeling the kinetics of release. FoodHydrocolloids, 93, 374-385. Ritger, P. L., &Peppas, N. A. (1987).A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of controlled release, 5(1), 23-36. Rojas-Moreno, S., Osorio-Revilla, G., Gallardo-Vel?zquez, T., C?rdenas-Bail?n, F., &Meza-M?rquez, G. (2018).Effect of the cross-linking agent and drying method on encapsulation efficiency of orange essential oil by complex coacervation using whey protein isolate with different polysaccharides. Journal of microencapsulation, 35(2), 165-180. Saha, K. C., Seal, H. P., & Noor, M. A. (2013). Isolation and characterization of piperine from the fruits of black pepper (Piper nigrum). Journal of the Bangladesh Agricultural University, 11, 11-16. Schmitt, C. Turgeon, S. L. (2011). Protein/polysaccharide complexes and coacervatesin food systems.Advances in Colloid and Interface Science 167, 63-70. Strugala,V.,Kennington,E.J.,Campbell,R.J.,Skjak-Braek, G.Dettmar, P.W. (2005). Inhibition of pepsin activity by alginates in vitro and the effect of epimerization. International Journal of Pharmaceutics, 304 (1?2), 40?50. Sunderland, A. M., Dettmar, P. W. Pearson, J. P. (2000). Alginates inhibit pepsin activity in vitro; a justification for their use in gastro-oesophageal reflux disease (GORD). Gastroenterology, 118(4), A21. Timilsena, Y. P. Wang, B. Adhikari, R. Adhikari, B. (2016). Preparation and characterization of chiaseed protein isolate?chia seed gum complex coacervates, Food hydrocolloids, 52, 554-563. Timilsena, Y. P., Adhikari, R., Barrow, C. J.Adhikari, B. (2017).Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates.Food hydrocolloids, 66, 71-81. Tom?, D. Debabbi, H. (1998).Physiological effects of milk proteincomponents. International Dairy Journal, 8, 383?392. Wang, L., Yang, S., Cao, J., Zhao, S., & Wang, W. (2016). Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex.Chemical and Pharmaceutical Bulletin, 64(1), 21-26. Wang, B., Blanch, E., Barrow, C. J., &Adhikari, B. (2017). Preparation and study of digestion behavior of lactoferrin-sodium alginate complex coacervates.Journal of functional foods, 37, 97-106. Voli?, M., Paji?-Lijakovi?, I., Djordjevi?, V., Kne?evi?-Jugovi?, Z., Pe?inar, I., Stevanovi?-Daji?, Z.Bugarski, B. (2018).Alginate/soy protein system for essential oil encapsulation with intestinal delivery.Carbohydratepolymers, 200, 15-24. Xiao, Z., Liu, W., Zhu, G., Zhou, R. Niu, Y. (2014). Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour and fragrance journal, 29 (3), 166-172. Xu, H., Lu, Y., Zhang, T., Liu, K., Liu, L., He, Z., Wu, X. (2019).Characterization of binding interactions of anthraquinones and bovine ?-lactoglobulin. Food chemistry, 281, 28-35. Yao, K., Chen, W., Song, F., McClements, D. J. Hu, K. (2018). Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcuminbioaccessibility and antioxidant capacity under simulated gastrointestinal conditions.Food hydrocolloids,79, 262-272. Ye, Q., Georges, N. Selomulya, C. (2018). Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends in food science & technology, 78, 167-179. Yuan, Y., Li, M. F., Chen, W. S., Zeng, Q. Z., Su, D. X., Tian, B., & He, S. (2018). Microencapsulation of shiitake (Lentinulaedodes) essential oil by complex coacervation: formation, rheological property, oxidative stability and odour attenuation effect. International Journal of Food Science & Technology, 53(7), 1681-1688. Zhang, K., Zhang, H., Hu, X., Bao, S. Huang, H. (2012).Synthesis and release studies of microalgal oil-containing microcapsules prepared by complex coacervation.Colloids and surfaces B: Biointerfaces, 89, 61-66. Zhang, Z., Zhang, R.McClements, D. J. (2016). Encapsulation of ?-carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocolloids,61, 1-10.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Ci?ncia e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/5319/4/2019+-+L%C3%ADvia+Pinto+Heckert+Bastos.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/5319/3/2019+-+L%C3%ADvia+Pinto+Heckert+Bastos.pdf.txt
http://localhost:8080/tede/bitstream/jspui/5319/2/2019+-+L%C3%ADvia+Pinto+Heckert+Bastos.pdf
http://localhost:8080/tede/bitstream/jspui/5319/1/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
1449f3b4c7d7a92d3dbfee9757a39646
ce97274f9550ecd8b91fe22fcc5c1604
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220356348444672