Pigmentos Naturais em Diferentes Variedades de Batatas-doces

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Jesus, Monalisa Santana Coelho de lattes
Orientador(a): Godoy, Ronoel Luiz de Oliveira lattes
Banca de defesa: Godoy, Ronoel Luiz de Oliveira lattes, Barbosa Junior, Jose Lucena lattes, Carvalho, Carlos Wanderlei Piler de lattes, Lima, Antonio Luiz dos Santos lattes, Gouv?a, Ana Cristina Miranda Senna
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Ci?ncia e Tecnologia de Alimentos
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/6934
Resumo: The sweet potato (Ipomoea batatas L.), rustic, rich in carbohydrates, functional phytochemicals, natural pigments, antioxidants and pro-vitamins A, has great potential to bring social and economic development for the most needy and distant of urban centers populations. It can aid in the prevention of diseases related to malnutrition, vitamin A deficiency and oxidative stress. It is an option to boost organic production systems and generate healthier foods with higher levels of nutrients and functional substances in a sustainable way. Their natural pigments (carotenoids and anthocyanins) can replace the synthetic dyes used in industrialized foods with functional advantages. The carotenoids and anthocyanins profile of many sweet potato varieties are still being published in recent works, as many of these molecules have not yet been elucidated. The functional potential of these phytochemicals depends on their stability to heat treatments and bioavailability after the digestive process. The objective of this work was to characterize and quantify the carotenoids and anthocyanins of four varieties of sweet potatoes grown in the organic system and to evaluate retention in the most common forms of consumption. Four organic sweet potato varieties were cultivated for this purpose and prepared in fresh, cooked and fried forms for evaluation of the contents, retention and profiles. The analytical techniques used were spectrophotometry, High Performance Liquid Chromatography with Diode Array Detector (HPLC-DAD) and High Resolution Mass Spectrometry with Electrospray Ionization (ESI-QToF-MS2). The carotenoids and anthocyanins present in the studied varieties were quantified and characterized. Most of the carotenoids and anthocyanins were identified and some were detected for the first time in the matrix, such as 6 acylated anthocyanins, among the 22 detected in the variety of purple skin and flesh, most of them derived from peonidin, justifying the purple color with red tint, acilated with caffeic, phydroxycinnamic and mainly ferulic acids. In the variety of white skin and purple flesh, 14 known anthocyanins have been identified, most of them derived from cyanidin, justifying the purple colour with blue tint and, acylated with the same acids, mainly caffeic. Two of them diacilated, rare in sweet potatoes, derived from pelargonidin were only identified in sweet potatoes by Lee et al. (2013). Unacylated anthocyanins were not detected. The anthocyanin profiles of these sweet potatoes differentiate them from other varieties. Anthocyanins were stable to cooking and frying, which facilitated their desorption from the starch of the matrices during the extraction, resulting in levels three times higher than in fresh sweet potatoes, indicating that heating should be inserted in their preparation before lyophilization, which also increases the extraction of anthocyanins, without degrading them. The carotenoid profile of the IAPAR 69 cultivar, with orange flesh due to b-carotene as a major (> 90%) and zeinoxanthin as a minor presented total contents of almost 65 mg 100-1 g-1 on dry basis (BS) with isomerization after cooking and frying with retentions around 55%. The yellowish flesh variety, with 2 mg 100-1 g-1 BS of unidentified total carotenoids, presented a rare profile characteristic of new xanthophylls similar to those found by Maoka et al. (2007), with degradation after cooking and frying, and retentions around 82%.
id UFRRJ-1_c2229652cb7a84e8b39f9674200a1cae
oai_identifier_str oai:localhost:jspui/6934
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Godoy, Ronoel Luiz de Oliveirahttp://lattes.cnpq.br/3671854931659782Godoy, Ronoel Luiz de Oliveirahttp://lattes.cnpq.br/3671854931659782Barbosa Junior, Jose Lucenahttps://orcid.org/0000-0001-8496-1404http://lattes.cnpq.br/5228796959263366Carvalho, Carlos Wanderlei Piler dehttps://orcid.org/0000-0002-7602-264Xhttp://lattes.cnpq.br/3532473530387852Lima, Antonio Luiz dos SantosGouv?a, Ana Cristina Miranda Sennahttp://lattes.cnpq.br/0719676140304035072.786.517-00https://orcid.org/0000-0001-5131-9167http://lattes.cnpq.br/0461770385333129Jesus, Monalisa Santana Coelho de2023-09-20T15:34:07Z2021-06-25JESUS, Monalisa Santana Coelho de. Pigmentos Naturais em Diferentes Variedades de Batatas-doces. 2021. 192 f. Tese (Doutorado em Ci?ncia e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2021.https://tede.ufrrj.br/jspui/handle/jspui/6934The sweet potato (Ipomoea batatas L.), rustic, rich in carbohydrates, functional phytochemicals, natural pigments, antioxidants and pro-vitamins A, has great potential to bring social and economic development for the most needy and distant of urban centers populations. It can aid in the prevention of diseases related to malnutrition, vitamin A deficiency and oxidative stress. It is an option to boost organic production systems and generate healthier foods with higher levels of nutrients and functional substances in a sustainable way. Their natural pigments (carotenoids and anthocyanins) can replace the synthetic dyes used in industrialized foods with functional advantages. The carotenoids and anthocyanins profile of many sweet potato varieties are still being published in recent works, as many of these molecules have not yet been elucidated. The functional potential of these phytochemicals depends on their stability to heat treatments and bioavailability after the digestive process. The objective of this work was to characterize and quantify the carotenoids and anthocyanins of four varieties of sweet potatoes grown in the organic system and to evaluate retention in the most common forms of consumption. Four organic sweet potato varieties were cultivated for this purpose and prepared in fresh, cooked and fried forms for evaluation of the contents, retention and profiles. The analytical techniques used were spectrophotometry, High Performance Liquid Chromatography with Diode Array Detector (HPLC-DAD) and High Resolution Mass Spectrometry with Electrospray Ionization (ESI-QToF-MS2). The carotenoids and anthocyanins present in the studied varieties were quantified and characterized. Most of the carotenoids and anthocyanins were identified and some were detected for the first time in the matrix, such as 6 acylated anthocyanins, among the 22 detected in the variety of purple skin and flesh, most of them derived from peonidin, justifying the purple color with red tint, acilated with caffeic, phydroxycinnamic and mainly ferulic acids. In the variety of white skin and purple flesh, 14 known anthocyanins have been identified, most of them derived from cyanidin, justifying the purple colour with blue tint and, acylated with the same acids, mainly caffeic. Two of them diacilated, rare in sweet potatoes, derived from pelargonidin were only identified in sweet potatoes by Lee et al. (2013). Unacylated anthocyanins were not detected. The anthocyanin profiles of these sweet potatoes differentiate them from other varieties. Anthocyanins were stable to cooking and frying, which facilitated their desorption from the starch of the matrices during the extraction, resulting in levels three times higher than in fresh sweet potatoes, indicating that heating should be inserted in their preparation before lyophilization, which also increases the extraction of anthocyanins, without degrading them. The carotenoid profile of the IAPAR 69 cultivar, with orange flesh due to b-carotene as a major (> 90%) and zeinoxanthin as a minor presented total contents of almost 65 mg 100-1 g-1 on dry basis (BS) with isomerization after cooking and frying with retentions around 55%. The yellowish flesh variety, with 2 mg 100-1 g-1 BS of unidentified total carotenoids, presented a rare profile characteristic of new xanthophylls similar to those found by Maoka et al. (2007), with degradation after cooking and frying, and retentions around 82%.A batata-doce (Ipomoea batatas L.), de cultivo r?stico, rica em carboidratos e fitoqu?micos funcionais, pigmentos naturais, antioxidantes e pr?-vitam?nicos A, possui grande potencial para levar desenvolvimento social e econ?mico para as popula??es mais carentes e distantes dos centros urbanos. Pode auxiliar na preven??o das doen?as relacionadas ? desnutri??o, ? avitaminose A e ao estresse oxidativo. ? uma op??o para impulsionar sistemas de produ??o org?nicos e gerar alimentos mais saud?veis, com maiores teores de nutrientes e subst?ncias funcionais, de forma sustent?vel. Seus pigmentos naturais (carotenoides e antocianinas) podem substituir com vantagens funcionais os corantes sint?ticos utilizados em alimentos industrializados. O perfil de carotenoides e antocianinas de muitas variedades de batatas-doces ainda est?o sendo publicados em trabalhos recentes, j? que muitas destas mol?culas ainda n?o foram elucidadas. O potencial funcional desses fitoqu?micos depende de suas estabilidades perante tratamentos t?rmicos e da biodisponibilidade ap?s o processo digestivo. O objetivo deste trabalho foi caracterizar e quantificar os carotenoides e antocianinas de quatro variedades de batatas-doces cultivadas em sistema org?nico e avaliar a reten??o nas formas de consumo mais comuns. Para isso foram cultivadas quatro variedades de batatas-doces org?nicas, preparadas nas formas in natura, cozidas e fritas para avalia??o dos teores, reten??o e perfis. As t?cnicas anal?ticas utilizadas foram espectrofotometria, Cromatografia L?quida de Alta Efici?ncia com Detector de Arranjo de Diodos (CLAE-DAD) e Espectrometria de Massas de Alta Resolu??o com Ioniza??o por Eletrospray (IES-QTdV-EM2). A maior parte dos carotenoides e antocianinas foi identificada e alguns foram detectados pela primeira vez na matriz, como 6 antocianinas aciladas, dentre as 22 detectadas na variedade de pele e polpa roxas, na maioria derivadas de peonidina, justificando a colora??o roxa com tonalidade avermelhada, aciladas com ?cidos cafeico, p-hidroxicin?mico e principalmente fer?lico. Na variedade de pele branca e polpa roxa foram identificadas 14 antocianinas j? conhecidas, a maior parte derivada de cianidina, justificando a cor roxa com tonalidade azulada e, aciladas com os mesmos ?cidos, principalmente o cafeico. Duas delas diaciladas, raras em batata-doce, derivadas de pelargonidina, s? foram identificadas em batata-doce por Lee et al. (2013). N?o foram detectadas antocianinas n?o aciladas. Os perfis das antocianinas dessas batatas-doces as diferenciam de outras variedades. As antocianinas foram est?veis ao cozimento e fritura, que facilitaram a dessor??o das mesmas do amido das matrizes durante a extra??o, resultando em teores tr?s vezes mais altos do que nas batatas-doces in natura, indicando que o aquecimento deve ser inserido no preparo delas antes da liofiliza??o, que tamb?m aumenta a extra??o das antocianinas, sem degrad?-las. O perfil de carotenoides da cultivar IAPAR 69, de polpa alaranjada devido ao b-caroteno como majorit?rio (>90%) e zeinoxantina como minorit?rio apresentou teor total de quase 65 mg 100-1 g-1 em base seca (BS), isomeriza??o ap?s cozimento e fritura com reten??es em torno de 55%. A variedade de polpa amarelada, com total de carotenoides n?o identificados de 2 mg 100-1 g-1 BS, apresentou perfil raro caracter?stico de novas xantofilas semelhantes ?quelas encontradas por Maoka et al. (2007), com degrada??o ap?s cozimento e fritura com reten??es em torno de 82%.Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-09-20T15:34:07Z No. of bitstreams: 1 2021 - Monalisa Santana Coelho de Jesus.pdf: 20848649 bytes, checksum: 45572492edf3ab067356f44352fdbd8a (MD5)Made available in DSpace on 2023-09-20T15:34:07Z (GMT). No. of bitstreams: 1 2021 - Monalisa Santana Coelho de Jesus.pdf: 20848649 bytes, checksum: 45572492edf3ab067356f44352fdbd8a (MD5) Previous issue date: 2021-06-25CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/74815/2021%20-%20Monalisa%20Santana%20Coelho%20de%20Jesus.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Ci?ncia e Tecnologia de AlimentosUFRRJBrasilInstituto de TecnologiaBANERJEE, S.; MAZUMDAR, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. International Journal of Analytical Chemistry, Article ID 282574, 2012. CASTA?EDA-OVANDO, A.; PACHECO-HERN?NDEZ, M. L.; P?EZ- HERN?NDEZ, M. E.; RODR?GUEZ, J. A.; GAL?N-VIDAL, C. A. Chemical studies of anthocyanins: A review. Food Chemistry, v. 113, p. 859-871, 2009. CEAGESP. N842-Normas de Classifica??o ? Programa Brasileiro para a Moderniza??o da Horticultura. S?o Paulo, v. 1, n. 1, PBMH, 2003; CHERNUSHEVICH, I.V.; LOBODA, A.V.; THOMSON, B.A. An introduction to quadrupole?time-of-flight mass spectrometry. Journal of Mass Spectrometry, v. 36, p. 849- 865, 2001. COLLINS, C.H.; MANFREDI, A.L.P.; VALENTE, A.L.P.; MURTA, A.L.M.; MCNAIR, H.M. O que ? a cromatografia l?quida de alta efici?ncia (CLAE). Qu?mica Nova, Abril, 1983. DEGANI, A.L.G.; CASS, Q.B.; VIEIRA, P.C. Cromatografia um breve ensaio. Qu?mica nova na Escola, 7 (maio), 1998. DENG, G.-F.; LIN, X.; XU, X.-R.; GAO, L.-L.; XIE, J.-F.; LI, H.-B. Antioxidant capacities and total phenolic contents of 56 vegetables. Journal of Functional Foods, n. 5, pg. 260-266, 2013. EL-ANEED, A.; COHEN, A.; BANOUB, J. Mass Spectrometry, Review of the Basics: Eletrospray, MALDI, and Commonly Used Mass Analisers. Applied Spectroscopy Reviews, v. 44, p. 210-230, 2009. GIORI, F. Adapta??o de metodologia de digest?o in vitro e determina??o da bioacessibilidade in vitro de ?-caroteno em tr?s variedades de batata doce de polpa alaranjada. Disserta??o (mestrado). Universidade Federal Rural do Rio de janeiro. Serop?dica. 2010; GIUSTI, M. M; WROLSTAD, R. E. Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, v. 14, p. 217?225, 2003. GIUSTI, M. M; WROLSTAD, R. E. Current Protocols in Food Analytical Chemistry, Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy, F1.2.1- F1.2.13, Copyright ?, John Wiley & Sons, Inc., 2001. GODA, Y.; SHIMIZU, T.; KATO, Y.; NAKAMURA, M.; MAITANI, T.; YAMADA, T.; TERAHARA, N.; YAMAGUCHI, M. Two Acylated anthocyanins from purple sweet potato. Phytochemistry, v. 44, n. 1, p. 183-186, 1997. 147 GRAS, C. C.; NEMETZ, N.; CARLE, R.; SCHWEIGGERT, R. M. Anthocyanins from purple sweet potato (Ipomoea batatas (L.) Lam.) and their color modulation by the addition of phenolic acids and food-grade phenolic plant extracts. Food Chemistry, v. 235, p. 265-274, 2017. HE, W.; ZENG, M.; CHEN, J.; JIAO, Y.; NIU, F.; TAO, G.; ZHANG, S.; QIN, F.; HE, Z. Identification and Quantitation of Anthocyanins in Purple-Fleshed Sweet Potatoes Cultivated in China by UPLC-PDA and UPLC-QTOF MS/MS. J. Agric. Food Chemistry, v. 64, p. 171- 177, 2016. HELENO, S.; MARTINS, A.; QUEIROZ, M.J.R.P.; FERREIRA, I.C.F.R. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, v. 173, p. 501?513, 2015. HOU, D.-X. Potential Mechanisms of Cancer Chemoprevention by Anthocyanins. Current Molecular Medicine, v. 3, p. 149-159, 2003. HU, Y.; DENG, L.; CHEN, J.; ZHOU, S.; LIU, S.; FU, Y.; YANG, C.; LIAO, Z.; CHEN, M. An analytical pipeline to compare and characterize the anthocyanins antioxidant activities of purple sweet potato cultivars. Food Chemistry, v. 194, p. 46-54, 2016. ISLAM, S. N., NUSRAT, T., BEGUM, P., AHSAN, M. Carotenoids and ?-carotene in orange fleshed sweet potato: A possible solution to vitamin A deficiency. Food Chemistry, v. 199, p. 628-631, 2016. JIE, L.; XIAO-DING, L.; YUN, Z.; ZHENG-DONG, Z.; ZHI-YA, Q.; MENG, L.; SHAOHUA, Z.; SHUO, L.; MENG, W.; LU, Q. Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chemistry, v. 136, p. 1429-1434, 2013. JR, I.M.R.; PASQUINI, C. Espectrofotometria multicanal e arranjos de fotodiodos. Qu?mica Nova, v. 20, n. 1, 1997. KADIAN, S. S.; GARG, M. Pharmacological Effects of Carotenoids: a review. International Journal of Pharmaceutical Sciences and Research; v. 3, n. 1, p. 42-48, 2012. KIM, H.J.; PARK, W. S.; BAE, J.-Y.; KANG, S. Y.; YANG, M. H.; LEE, S.; LEE, H.-S.; KWAK, S.-S.; AHN, M.-J. Variations in the carotenoid and anthocyanin contents of Korean cultural varieties and home-processed sweet potatoes. Journal of Food Composition and Analysis, v. 41, p. 188-193, 2015. KIM, J.-M.; PARK, S.-J.; LEE, C.-S.; REN, C.; KIM, S.-S.; SHIM, M. Functional Properties of Different Korean Sweet Potato Varieties. Food Sci. Biotechnol., v. 20, n. 6, p. 1501-1507, 2012. LEE, M. J.; PARK, J. S.; CHOI, D. S.; JUNG, M. Y. Characterization and Quantitation of Anthocyanins in Purple-Fleshed Sweet Potatoes Cultivated in Korea by HPLC-DAD and HPLC-ESIQTOF MS/MS. J. Agric. Food Chem., v. 61, p. 3148?3158, 2013. 148 LEMOS, M.A; ALIYU, M.M.; HUNGERFORD, G. Influence of cooking on the levels of bioactive compounds in Purple Majesty potato observed via chemical and spectroscopic means. Food Chemistry, v. 173, p. 462-467, 2015. LUO, C.L.; ZHOU, Q.; YANG, Z.W.; WANG, R.D.; ZHANG, J.L. Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. cultivar Eshu No.8). Food Chemistry, v. 241, p. 23-31, 2018. MALDANER, L.; JARDIM, I.C.S.F. O Estado da Arte da Cromatografia L?quida de Ultra Efici?ncia. Quimica Nova, v. 32, n. 1, p. 214-222, 2009. MAOKA, T.; AKIMOTO, N.; ISHIGURO, K.; YOSHINAGA, M.; YOSHIMOTO, M. Carotenoids with a 5,6-dihydro-5,6-dihydroxy-b-end group, from yellow sweet potato ??Benimasari??, Ipomoea batatas LAM. Phytochemistry, v. 68, p. 1740-1745, 2007. MARTINHO, J.M.G. Espectroscopia de Absor??o no Ultravioleta e Vis?vel. Qu?mica, 52, 1994. MARTINS, G.B.C.; SUCUPIRA, R.R.; SUAREZ, P.A.Z. a Qu?mica e as Cores. Revista Virtual de Qu?mica, v. 7, n. 4, p. 1508-1534, 2015. MONTILLA, E. C.; HILLEBRAND, S.; BUTSCHBACH, D.; BALDERMANN, S.; WATANABE, N.; WINTERHALTER, P. Preparative Isolation of Anthocyanins from Japanese Purple Sweet Potato (Ipomoea batatas L.) Varieties by High-Speed Countercurrent Chromatography. J. Agric. Food Chem, v. 58, p. 9899?9904, 2010. NASCIMENTO, L. S. M.; SANTIAGO, M. C. P. A.; OLIVEIRA, E. M. M.; BORGUINI, R. G.; BRAGA, E. E. O.; MARTINS, V. C. ; PACHECO, S.; SOUZA, M. C.; GODOY, R. L. O. Characterization of Bioactive Compounds in Eugenia brasiliensis, Lam. (Grumixama). Nutrition and Food Technology: open Access, v. 3, n. 3, 1-7, 2017. ODAKE, K.; TERAHARA, N.; SAITO, N.; TOKIS, K.; HONDA, T. Chemical Structures of Two Anthocyanins from Purple Sweet Potato, Ipomoea Batatas. Phytochemistry, v. 31, n. 6, p. 2127-2130, 1992. OLIVEIRA, H.; BAS?LIO, N.; PINA, F.; FERNANDES, I.; FREITAS, V.; MATEUS, N. Purple-fleshed sweet potato acylated anthocyanins: Equilibrium network and photophysical properties. Food Chemistry, v. 288, p. 386?394, 2019a. OLIVEIRA, H.; PEREZ-GRAG?RIO, R.; FREITAS, V.; MATEUS, N.; FERNANDES, I. Comparison of the in vitro gastrointestinal bioavailability of acylated and non-acylated anthocyanins: Purple-fleshed sweet potato vs red wine. Food Chemistry, v. 276, p. 410?418, 2019b. OLIVEIRA, H.; ROMA-RODRIGUES, C.; SANTOS, A.; VEIGAS, B.; BR?S, N.; FARIA, A.; CALHAU, C.; FREITAS, V.; BAPTISTA, P.V.; MATEUS, N.; FERNANDES, A.R.; FERNANDES, I. GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach. Scientific Reports, v. 9, n. 789, p. 1-14, 2019c. 149 OLIVEIRA, L.F.C. Espectroscopia Molecular. Cadernos Tem?ticos de Qu?mica Nova da Escola, 4 (maio), 2001. PACHECO, S. Preparo de padr?es anal?ticos, estudo de estabilidade e estudo de valida??o para ensaio de carotenoides por cromatografia l?quida. Disserta??o, mestrado em Ci?ncia e Tecnologia de Alimentos, Programa de P?s-gradua??o em Ci?ncia e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2009. PACHECO, S.; BORGUINI, R. G.; SANTIAGO, M. C. P. A.; NASCIMENTO, L. S. M.; GODOY, R. L. O. Hist?ria da Cromatografia L?quida. Revista Virtual de Qu?mica, v. 7 n. 4, p. 1225-1271, 2015. PACHECO, S.; PEIXOTO, F. M.; BORGUINI, R. G.; NASCIMENTO, L. S. M.; BOBEDA, C. R. R.; SANTIAGO, M. C. P. A.; GODOY, R. L. O. Microscale extraction method for HPLC carotenoid analysis in vegetable matrices. Scientia Agricola, v. 71, n. 5, p. 416-419, 2014. PASSOS, E.A. Aula 2: Espectrofotometria de Absor??o Molecular na Regi?o do UV/Vis. https://docplayer.com.br/13995052-Aula-2-espectrofotometria-de-absorcao-molecular-naregiao- do-uv-vis-elisangela-de-andrade-passos.html. Acessado em 26 de dezembro 2020; PUERTOLAS, E.; CREGENZ?N, O.; LUENGO, E.; ?LVAREZ, I.; RASO, J. Pulsed-electricfield- assisted extraction of anthocyanins from purple-fleshed potato. Food Chemistry, v. 136, p. 1330?1336, 2013. QIU, F.; LUO, J.; YAO, S.; MA, L.; KONG, L. Preparative isolation and purification of anthocyanins from purple sweet potato by highspeed counter-current chromatography. Journal of Separation Science, v. 32, p. 2146 ? 2151, 2009 RAO, A.V.; RAO, L. G. Carotenoids and human health. Pharmacological Research, v. 55, p. 207?216, 2007 RASHMI, H.B.; NEGI, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Research International, v. 136, p. 1-14, 2020. RODRIGUEZ-AMAYA, D. B. A Guide to Carotenoid Analysis in Foods. 1a Ed., Washington D.C., ILSI PRESS, 2001; RUMBAOA, R. G. O.; CORNAGO, D. F.; GERONIMO, I. M. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chemistry, v. 113, p. 1133?1138, 2009. SHAN, S.; ZHU, K.-X.; PENG, W.; ZHOU, H.-M. Physicochemical Properties and Salted Noodle-making Quality of Purple Sweet Potato Flour and Wheat Flour Blends. Journal of Food Processing and Preservation, v. 37, p. 709?716, 2012. SILVA, L.A.V. Palestra de Agroecologia. V?rtices, Campos dos Goytacazes, RJ, v. 12, n. 3, p.199-201, 2010. 150 SKOOG, D.A.; HOLLER, F.J.; NIEMAN, A. Princ?pios de An?lise Instrumental. 5 Ed., Porto Alegre, Bookman, 2002. SMERIGLIO, A.; BARRECA, D.; BELLOCCO, E.; TROMBETTA, D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytotherapy Research, v. 30, p. 1265? 1286, 2016. TEOW, C. C.; TRUONG, V.-D.; MCFEETERS, R. F.; THOMPSOM, R. L.; PECOTA, K. V.; YENCHO, G. C. Antioxidant activities, phenolic and ?-carotene contents of sweet potato genotypes with varing flesh colours. Food Chemistry, v. 103, p. 829-838, 2007. TERAHARA, N.; KONCZAK-ISLAM, I.; NAKATANI, M.; YAMAKAWA, O.; GODA, Y.; HONDA, T. Anthocyanins in callus induced from purple storage root of Ipomoea batatas L. Phytochemistry, v. 54, p. 919-922, 2000. TERAHARA, N.; KONCZAK-ISLAM, I.; ONO, H.; YOSHIMOTO, M.; YAMAKAWA, O. Characterization of acylated anthocyanins in callus induced from storage root of purple-fleshed sweet potato, Ipomoea batatas L. Journal of Biomedicine and Biotechnology, v. 5, p. 279? 286, 2004. TERAHARA, N.; SHIMIZU, T.; KATO, Y.; NAKAMURA, M.; MAITANI, T.; YAMAGUCHI, M.; GODA, Y. Six Diacylated Anthocyanins from the Storage Roots of Purple Sweet Potato, Ipomoea batatas. Biosci. Biotechnol. Biochem., v. 63, n. 8, p. 1420-1424, 1999. TIAN, Q.; KONCZAK, I.; SCHWARTZ, S.J. Probing Anthocyanin Profiles in Purple Sweet Potato Cell Line (Ipomoea batatas L. Cv. Ayamurasaki) by High-Performance Liquid Chromatography and Electrospray Ionization Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, v. 53, p. 6503-6509, 2005. TRUONG, V. D.; HUA, Z.; THOMPSON, R.L.; YENCHO, G.C.; PECOTA, K.V. Pressurized liquid extraction and quantification of anthocyanins in purple-fleshed sweet potato genotypes. Journal of Food Composition and Analysis, v. 26, p. 96?103, 2012. TRUONG, V.-D., DEIGHTON, N.; THOMPSOM, R. T., MCFEETERS, R. F., DEAN, L. O.; PECOTA, K. V.; YENCHO, G. C. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweet potatoes by HPLC-DAD/ESI-MS/MS. J. Agric. Food Chem, v. 58, p. 404?410, 2010. TSUDA, T. Anthocyanins as Functional Food Factors - Chemistry, Nutrition and Health Promotion. Food Science Technology Research, v. 18, n. 3, p. 315 ? 324, 2012. VOJDANI, A; VOJDANI, C. Immune reactivity to food Coloring. Alternative Therapies in Health & Medicine, v. 21, n. S1, p. 52-63, 2015. WALLACE, T. C. Anthocyanins in Cardiovascular Disease. Advances in Nutrition, v. 2, p. 1?7, 2011. WANG, L.; ZHAO, Y.; ZHOU, Q.; LUO, C.-L.; DENG, A.-P.; ZHANG, Z.-C.; J.-L. Characterization and hepatoprotective activity of anthocyanins from purple sweet potato 151 (Ipomoea batatas L. cultivar Eshu No. 8). Journal of Food and Drug Analysis, v. 25, p. 607- 618, 2017. WANG, S.; NIE, S.; ZHU, F. Chemical constituents and health effects of sweet potato. Food Research International, v. 89, p. 90-116, 2016. WANG, Y.; LIU, F.; CAO, X.; CHEN, F.; HU, X.; LIAO, X. Comparison of hight hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innovative Food Science and Emerging Technologies, v. 16, p. 326?334, 2012. WANG, Z.; CLIFFORD, M. N.; SHARP, P. Analysis of chlorogenic acids in beverages prepared from Chinese health foods and investigation, in vitro, of effects on glucose absortion in cultures Caco-2 cells. Food Chemistry, v. 108, p. 369-373, 2008. XU, J.; SU, X.; LIM, S.; GRIFFIN, J.; CAREY, E.; KATZ, B.; TOMICH, J.; SMITH, J. S.; WANG, W. Characterization and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chemistry, v. 186, p. 90-96, 2015. YANG, Z.-W.; TANG, C.-E; ZHANG, J.-L; ZHOU, Q.; ZHANG, Z.-C. Stability and antioxidant activity of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No.8) subjected to simulated in vitro gastrointestinal digestion. International Journal of Food Science and Technology, v. 54, p. 2604-2614, 2019. YING, L.; JIA-YING, L; JING, L.; MI-LU, L.; ZHONG-HUA, L. Preparative Separation of Anthocyanins from Purple Sweet Potatoes by High-Speed Counter-Current Chromatography. Chin. J. Anal. Chem., v. 39, n. 6, p. 851?856, 2011. YOSHINAGA, M.; YAMAKAWA, O.; NAKATANI, M. Changes in Anthocyanin Content and Composition of Developing Storage Root of Purple-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam). Breeding Science, v. 50, p. 59-64, 2000. YOSHINAGA, M.; YAMAKAWA, O.; NAKATANI, M. Genotypic Diversity of Anthocyanin Content and Composition in purple-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam). Breeding Science, v. 49, p. 43-47,1999. ZHANG, J.L.; LUO, C.L.; ZHOU, Q.; ZHANG, Z.C. Isolation and identification of two major acylated anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) by UPLC-QTOF-MS/MS and NMR. International Journal of Food Science and Technology, v. 53, p. 1932?1941, 2018. ZHAO, J.-G.; YAN, Q.-Q.; XUE, R.-Y.; ZHANG, J.; ZHANG, Y.-Q. Isolation and identification of colourless caffeoyl compounds in purple sweet potato by HPLC-DAD-ESI/MS and their antioxidant activities. Food Chemistry, v. 161, p. 22-26, 2014. ZHU, Z; GUAN, Q.; KOUBAA, M.; BARBA, F. J.; ROOHINEJAD, S.; CRAVOTTO, G.; YANG, X.; LI, S.; HE, J. HPLC-DAD-ESI-MS2 analytical profile of extracts obtained from purple sweet potato after green ultrasound-assisted extraction. Food Chemistry, v. 215, p. 391- 400, 2017.pigmento naturalantioxidanteespectrometria de massasbatata-doceagricultura org?nicanatural pigmentsantioxidantmass spectrometrysweet potatoorganic agricultureCi?ncia e Tecnologia de AlimentosPigmentos Naturais em Diferentes Variedades de Batatas-docesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2021 - Monalisa Santana Coelho de Jesus.pdf.jpg2021 - Monalisa Santana Coelho de Jesus.pdf.jpgimage/jpeg3222http://localhost:8080/tede/bitstream/jspui/6934/4/2021+-+Monalisa+Santana+Coelho+de+Jesus.pdf.jpg1d436c9df8dee444cbac2c6ff353f87dMD54TEXT2021 - Monalisa Santana Coelho de Jesus.pdf.txt2021 - Monalisa Santana Coelho de Jesus.pdf.txttext/plain548843http://localhost:8080/tede/bitstream/jspui/6934/3/2021+-+Monalisa+Santana+Coelho+de+Jesus.pdf.txtdb71177d34317d14540b808106f34b6cMD53ORIGINAL2021 - Monalisa Santana Coelho de Jesus.pdf2021 - Monalisa Santana Coelho de Jesus.pdfapplication/pdf20848649http://localhost:8080/tede/bitstream/jspui/6934/2/2021+-+Monalisa+Santana+Coelho+de+Jesus.pdf45572492edf3ab067356f44352fdbd8aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/6934/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/69342023-09-21 01:01:05.618oai:localhost:jspui/6934Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-09-21T04:01:05Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Pigmentos Naturais em Diferentes Variedades de Batatas-doces
title Pigmentos Naturais em Diferentes Variedades de Batatas-doces
spellingShingle Pigmentos Naturais em Diferentes Variedades de Batatas-doces
Jesus, Monalisa Santana Coelho de
pigmento natural
antioxidante
espectrometria de massas
batata-doce
agricultura org?nica
natural pigments
antioxidant
mass spectrometry
sweet potato
organic agriculture
Ci?ncia e Tecnologia de Alimentos
title_short Pigmentos Naturais em Diferentes Variedades de Batatas-doces
title_full Pigmentos Naturais em Diferentes Variedades de Batatas-doces
title_fullStr Pigmentos Naturais em Diferentes Variedades de Batatas-doces
title_full_unstemmed Pigmentos Naturais em Diferentes Variedades de Batatas-doces
title_sort Pigmentos Naturais em Diferentes Variedades de Batatas-doces
author Jesus, Monalisa Santana Coelho de
author_facet Jesus, Monalisa Santana Coelho de
author_role author
dc.contributor.advisor1.fl_str_mv Godoy, Ronoel Luiz de Oliveira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3671854931659782
dc.contributor.referee1.fl_str_mv Godoy, Ronoel Luiz de Oliveira
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3671854931659782
dc.contributor.referee2.fl_str_mv Barbosa Junior, Jose Lucena
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0001-8496-1404
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5228796959263366
dc.contributor.referee3.fl_str_mv Carvalho, Carlos Wanderlei Piler de
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0002-7602-264X
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3532473530387852
dc.contributor.referee4.fl_str_mv Lima, Antonio Luiz dos Santos
dc.contributor.referee5.fl_str_mv Gouv?a, Ana Cristina Miranda Senna
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/0719676140304035
dc.contributor.authorID.fl_str_mv 072.786.517-00
https://orcid.org/0000-0001-5131-9167
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0461770385333129
dc.contributor.author.fl_str_mv Jesus, Monalisa Santana Coelho de
contributor_str_mv Godoy, Ronoel Luiz de Oliveira
Godoy, Ronoel Luiz de Oliveira
Barbosa Junior, Jose Lucena
Carvalho, Carlos Wanderlei Piler de
Lima, Antonio Luiz dos Santos
Gouv?a, Ana Cristina Miranda Senna
dc.subject.por.fl_str_mv pigmento natural
antioxidante
espectrometria de massas
batata-doce
agricultura org?nica
topic pigmento natural
antioxidante
espectrometria de massas
batata-doce
agricultura org?nica
natural pigments
antioxidant
mass spectrometry
sweet potato
organic agriculture
Ci?ncia e Tecnologia de Alimentos
dc.subject.eng.fl_str_mv natural pigments
antioxidant
mass spectrometry
sweet potato
organic agriculture
dc.subject.cnpq.fl_str_mv Ci?ncia e Tecnologia de Alimentos
description The sweet potato (Ipomoea batatas L.), rustic, rich in carbohydrates, functional phytochemicals, natural pigments, antioxidants and pro-vitamins A, has great potential to bring social and economic development for the most needy and distant of urban centers populations. It can aid in the prevention of diseases related to malnutrition, vitamin A deficiency and oxidative stress. It is an option to boost organic production systems and generate healthier foods with higher levels of nutrients and functional substances in a sustainable way. Their natural pigments (carotenoids and anthocyanins) can replace the synthetic dyes used in industrialized foods with functional advantages. The carotenoids and anthocyanins profile of many sweet potato varieties are still being published in recent works, as many of these molecules have not yet been elucidated. The functional potential of these phytochemicals depends on their stability to heat treatments and bioavailability after the digestive process. The objective of this work was to characterize and quantify the carotenoids and anthocyanins of four varieties of sweet potatoes grown in the organic system and to evaluate retention in the most common forms of consumption. Four organic sweet potato varieties were cultivated for this purpose and prepared in fresh, cooked and fried forms for evaluation of the contents, retention and profiles. The analytical techniques used were spectrophotometry, High Performance Liquid Chromatography with Diode Array Detector (HPLC-DAD) and High Resolution Mass Spectrometry with Electrospray Ionization (ESI-QToF-MS2). The carotenoids and anthocyanins present in the studied varieties were quantified and characterized. Most of the carotenoids and anthocyanins were identified and some were detected for the first time in the matrix, such as 6 acylated anthocyanins, among the 22 detected in the variety of purple skin and flesh, most of them derived from peonidin, justifying the purple color with red tint, acilated with caffeic, phydroxycinnamic and mainly ferulic acids. In the variety of white skin and purple flesh, 14 known anthocyanins have been identified, most of them derived from cyanidin, justifying the purple colour with blue tint and, acylated with the same acids, mainly caffeic. Two of them diacilated, rare in sweet potatoes, derived from pelargonidin were only identified in sweet potatoes by Lee et al. (2013). Unacylated anthocyanins were not detected. The anthocyanin profiles of these sweet potatoes differentiate them from other varieties. Anthocyanins were stable to cooking and frying, which facilitated their desorption from the starch of the matrices during the extraction, resulting in levels three times higher than in fresh sweet potatoes, indicating that heating should be inserted in their preparation before lyophilization, which also increases the extraction of anthocyanins, without degrading them. The carotenoid profile of the IAPAR 69 cultivar, with orange flesh due to b-carotene as a major (> 90%) and zeinoxanthin as a minor presented total contents of almost 65 mg 100-1 g-1 on dry basis (BS) with isomerization after cooking and frying with retentions around 55%. The yellowish flesh variety, with 2 mg 100-1 g-1 BS of unidentified total carotenoids, presented a rare profile characteristic of new xanthophylls similar to those found by Maoka et al. (2007), with degradation after cooking and frying, and retentions around 82%.
publishDate 2021
dc.date.issued.fl_str_mv 2021-06-25
dc.date.accessioned.fl_str_mv 2023-09-20T15:34:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv JESUS, Monalisa Santana Coelho de. Pigmentos Naturais em Diferentes Variedades de Batatas-doces. 2021. 192 f. Tese (Doutorado em Ci?ncia e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2021.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/6934
identifier_str_mv JESUS, Monalisa Santana Coelho de. Pigmentos Naturais em Diferentes Variedades de Batatas-doces. 2021. 192 f. Tese (Doutorado em Ci?ncia e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2021.
url https://tede.ufrrj.br/jspui/handle/jspui/6934
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv BANERJEE, S.; MAZUMDAR, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. International Journal of Analytical Chemistry, Article ID 282574, 2012. CASTA?EDA-OVANDO, A.; PACHECO-HERN?NDEZ, M. L.; P?EZ- HERN?NDEZ, M. E.; RODR?GUEZ, J. A.; GAL?N-VIDAL, C. A. Chemical studies of anthocyanins: A review. Food Chemistry, v. 113, p. 859-871, 2009. CEAGESP. N842-Normas de Classifica??o ? Programa Brasileiro para a Moderniza??o da Horticultura. S?o Paulo, v. 1, n. 1, PBMH, 2003; CHERNUSHEVICH, I.V.; LOBODA, A.V.; THOMSON, B.A. An introduction to quadrupole?time-of-flight mass spectrometry. Journal of Mass Spectrometry, v. 36, p. 849- 865, 2001. COLLINS, C.H.; MANFREDI, A.L.P.; VALENTE, A.L.P.; MURTA, A.L.M.; MCNAIR, H.M. O que ? a cromatografia l?quida de alta efici?ncia (CLAE). Qu?mica Nova, Abril, 1983. DEGANI, A.L.G.; CASS, Q.B.; VIEIRA, P.C. Cromatografia um breve ensaio. Qu?mica nova na Escola, 7 (maio), 1998. DENG, G.-F.; LIN, X.; XU, X.-R.; GAO, L.-L.; XIE, J.-F.; LI, H.-B. Antioxidant capacities and total phenolic contents of 56 vegetables. Journal of Functional Foods, n. 5, pg. 260-266, 2013. EL-ANEED, A.; COHEN, A.; BANOUB, J. Mass Spectrometry, Review of the Basics: Eletrospray, MALDI, and Commonly Used Mass Analisers. Applied Spectroscopy Reviews, v. 44, p. 210-230, 2009. GIORI, F. Adapta??o de metodologia de digest?o in vitro e determina??o da bioacessibilidade in vitro de ?-caroteno em tr?s variedades de batata doce de polpa alaranjada. Disserta??o (mestrado). Universidade Federal Rural do Rio de janeiro. Serop?dica. 2010; GIUSTI, M. M; WROLSTAD, R. E. Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, v. 14, p. 217?225, 2003. GIUSTI, M. M; WROLSTAD, R. E. Current Protocols in Food Analytical Chemistry, Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy, F1.2.1- F1.2.13, Copyright ?, John Wiley & Sons, Inc., 2001. GODA, Y.; SHIMIZU, T.; KATO, Y.; NAKAMURA, M.; MAITANI, T.; YAMADA, T.; TERAHARA, N.; YAMAGUCHI, M. Two Acylated anthocyanins from purple sweet potato. Phytochemistry, v. 44, n. 1, p. 183-186, 1997. 147 GRAS, C. C.; NEMETZ, N.; CARLE, R.; SCHWEIGGERT, R. M. Anthocyanins from purple sweet potato (Ipomoea batatas (L.) Lam.) and their color modulation by the addition of phenolic acids and food-grade phenolic plant extracts. Food Chemistry, v. 235, p. 265-274, 2017. HE, W.; ZENG, M.; CHEN, J.; JIAO, Y.; NIU, F.; TAO, G.; ZHANG, S.; QIN, F.; HE, Z. Identification and Quantitation of Anthocyanins in Purple-Fleshed Sweet Potatoes Cultivated in China by UPLC-PDA and UPLC-QTOF MS/MS. J. Agric. Food Chemistry, v. 64, p. 171- 177, 2016. HELENO, S.; MARTINS, A.; QUEIROZ, M.J.R.P.; FERREIRA, I.C.F.R. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, v. 173, p. 501?513, 2015. HOU, D.-X. Potential Mechanisms of Cancer Chemoprevention by Anthocyanins. Current Molecular Medicine, v. 3, p. 149-159, 2003. HU, Y.; DENG, L.; CHEN, J.; ZHOU, S.; LIU, S.; FU, Y.; YANG, C.; LIAO, Z.; CHEN, M. An analytical pipeline to compare and characterize the anthocyanins antioxidant activities of purple sweet potato cultivars. Food Chemistry, v. 194, p. 46-54, 2016. ISLAM, S. N., NUSRAT, T., BEGUM, P., AHSAN, M. Carotenoids and ?-carotene in orange fleshed sweet potato: A possible solution to vitamin A deficiency. Food Chemistry, v. 199, p. 628-631, 2016. JIE, L.; XIAO-DING, L.; YUN, Z.; ZHENG-DONG, Z.; ZHI-YA, Q.; MENG, L.; SHAOHUA, Z.; SHUO, L.; MENG, W.; LU, Q. Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chemistry, v. 136, p. 1429-1434, 2013. JR, I.M.R.; PASQUINI, C. Espectrofotometria multicanal e arranjos de fotodiodos. Qu?mica Nova, v. 20, n. 1, 1997. KADIAN, S. S.; GARG, M. Pharmacological Effects of Carotenoids: a review. International Journal of Pharmaceutical Sciences and Research; v. 3, n. 1, p. 42-48, 2012. KIM, H.J.; PARK, W. S.; BAE, J.-Y.; KANG, S. Y.; YANG, M. H.; LEE, S.; LEE, H.-S.; KWAK, S.-S.; AHN, M.-J. Variations in the carotenoid and anthocyanin contents of Korean cultural varieties and home-processed sweet potatoes. Journal of Food Composition and Analysis, v. 41, p. 188-193, 2015. KIM, J.-M.; PARK, S.-J.; LEE, C.-S.; REN, C.; KIM, S.-S.; SHIM, M. Functional Properties of Different Korean Sweet Potato Varieties. Food Sci. Biotechnol., v. 20, n. 6, p. 1501-1507, 2012. LEE, M. J.; PARK, J. S.; CHOI, D. S.; JUNG, M. Y. Characterization and Quantitation of Anthocyanins in Purple-Fleshed Sweet Potatoes Cultivated in Korea by HPLC-DAD and HPLC-ESIQTOF MS/MS. J. Agric. Food Chem., v. 61, p. 3148?3158, 2013. 148 LEMOS, M.A; ALIYU, M.M.; HUNGERFORD, G. Influence of cooking on the levels of bioactive compounds in Purple Majesty potato observed via chemical and spectroscopic means. Food Chemistry, v. 173, p. 462-467, 2015. LUO, C.L.; ZHOU, Q.; YANG, Z.W.; WANG, R.D.; ZHANG, J.L. Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. cultivar Eshu No.8). Food Chemistry, v. 241, p. 23-31, 2018. MALDANER, L.; JARDIM, I.C.S.F. O Estado da Arte da Cromatografia L?quida de Ultra Efici?ncia. Quimica Nova, v. 32, n. 1, p. 214-222, 2009. MAOKA, T.; AKIMOTO, N.; ISHIGURO, K.; YOSHINAGA, M.; YOSHIMOTO, M. Carotenoids with a 5,6-dihydro-5,6-dihydroxy-b-end group, from yellow sweet potato ??Benimasari??, Ipomoea batatas LAM. Phytochemistry, v. 68, p. 1740-1745, 2007. MARTINHO, J.M.G. Espectroscopia de Absor??o no Ultravioleta e Vis?vel. Qu?mica, 52, 1994. MARTINS, G.B.C.; SUCUPIRA, R.R.; SUAREZ, P.A.Z. a Qu?mica e as Cores. Revista Virtual de Qu?mica, v. 7, n. 4, p. 1508-1534, 2015. MONTILLA, E. C.; HILLEBRAND, S.; BUTSCHBACH, D.; BALDERMANN, S.; WATANABE, N.; WINTERHALTER, P. Preparative Isolation of Anthocyanins from Japanese Purple Sweet Potato (Ipomoea batatas L.) Varieties by High-Speed Countercurrent Chromatography. J. Agric. Food Chem, v. 58, p. 9899?9904, 2010. NASCIMENTO, L. S. M.; SANTIAGO, M. C. P. A.; OLIVEIRA, E. M. M.; BORGUINI, R. G.; BRAGA, E. E. O.; MARTINS, V. C. ; PACHECO, S.; SOUZA, M. C.; GODOY, R. L. O. Characterization of Bioactive Compounds in Eugenia brasiliensis, Lam. (Grumixama). Nutrition and Food Technology: open Access, v. 3, n. 3, 1-7, 2017. ODAKE, K.; TERAHARA, N.; SAITO, N.; TOKIS, K.; HONDA, T. Chemical Structures of Two Anthocyanins from Purple Sweet Potato, Ipomoea Batatas. Phytochemistry, v. 31, n. 6, p. 2127-2130, 1992. OLIVEIRA, H.; BAS?LIO, N.; PINA, F.; FERNANDES, I.; FREITAS, V.; MATEUS, N. Purple-fleshed sweet potato acylated anthocyanins: Equilibrium network and photophysical properties. Food Chemistry, v. 288, p. 386?394, 2019a. OLIVEIRA, H.; PEREZ-GRAG?RIO, R.; FREITAS, V.; MATEUS, N.; FERNANDES, I. Comparison of the in vitro gastrointestinal bioavailability of acylated and non-acylated anthocyanins: Purple-fleshed sweet potato vs red wine. Food Chemistry, v. 276, p. 410?418, 2019b. OLIVEIRA, H.; ROMA-RODRIGUES, C.; SANTOS, A.; VEIGAS, B.; BR?S, N.; FARIA, A.; CALHAU, C.; FREITAS, V.; BAPTISTA, P.V.; MATEUS, N.; FERNANDES, A.R.; FERNANDES, I. GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach. Scientific Reports, v. 9, n. 789, p. 1-14, 2019c. 149 OLIVEIRA, L.F.C. Espectroscopia Molecular. Cadernos Tem?ticos de Qu?mica Nova da Escola, 4 (maio), 2001. PACHECO, S. Preparo de padr?es anal?ticos, estudo de estabilidade e estudo de valida??o para ensaio de carotenoides por cromatografia l?quida. Disserta??o, mestrado em Ci?ncia e Tecnologia de Alimentos, Programa de P?s-gradua??o em Ci?ncia e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2009. PACHECO, S.; BORGUINI, R. G.; SANTIAGO, M. C. P. A.; NASCIMENTO, L. S. M.; GODOY, R. L. O. Hist?ria da Cromatografia L?quida. Revista Virtual de Qu?mica, v. 7 n. 4, p. 1225-1271, 2015. PACHECO, S.; PEIXOTO, F. M.; BORGUINI, R. G.; NASCIMENTO, L. S. M.; BOBEDA, C. R. R.; SANTIAGO, M. C. P. A.; GODOY, R. L. O. Microscale extraction method for HPLC carotenoid analysis in vegetable matrices. Scientia Agricola, v. 71, n. 5, p. 416-419, 2014. PASSOS, E.A. Aula 2: Espectrofotometria de Absor??o Molecular na Regi?o do UV/Vis. https://docplayer.com.br/13995052-Aula-2-espectrofotometria-de-absorcao-molecular-naregiao- do-uv-vis-elisangela-de-andrade-passos.html. Acessado em 26 de dezembro 2020; PUERTOLAS, E.; CREGENZ?N, O.; LUENGO, E.; ?LVAREZ, I.; RASO, J. Pulsed-electricfield- assisted extraction of anthocyanins from purple-fleshed potato. Food Chemistry, v. 136, p. 1330?1336, 2013. QIU, F.; LUO, J.; YAO, S.; MA, L.; KONG, L. Preparative isolation and purification of anthocyanins from purple sweet potato by highspeed counter-current chromatography. Journal of Separation Science, v. 32, p. 2146 ? 2151, 2009 RAO, A.V.; RAO, L. G. Carotenoids and human health. Pharmacological Research, v. 55, p. 207?216, 2007 RASHMI, H.B.; NEGI, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Research International, v. 136, p. 1-14, 2020. RODRIGUEZ-AMAYA, D. B. A Guide to Carotenoid Analysis in Foods. 1a Ed., Washington D.C., ILSI PRESS, 2001; RUMBAOA, R. G. O.; CORNAGO, D. F.; GERONIMO, I. M. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chemistry, v. 113, p. 1133?1138, 2009. SHAN, S.; ZHU, K.-X.; PENG, W.; ZHOU, H.-M. Physicochemical Properties and Salted Noodle-making Quality of Purple Sweet Potato Flour and Wheat Flour Blends. Journal of Food Processing and Preservation, v. 37, p. 709?716, 2012. SILVA, L.A.V. Palestra de Agroecologia. V?rtices, Campos dos Goytacazes, RJ, v. 12, n. 3, p.199-201, 2010. 150 SKOOG, D.A.; HOLLER, F.J.; NIEMAN, A. Princ?pios de An?lise Instrumental. 5 Ed., Porto Alegre, Bookman, 2002. SMERIGLIO, A.; BARRECA, D.; BELLOCCO, E.; TROMBETTA, D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytotherapy Research, v. 30, p. 1265? 1286, 2016. TEOW, C. C.; TRUONG, V.-D.; MCFEETERS, R. F.; THOMPSOM, R. L.; PECOTA, K. V.; YENCHO, G. C. Antioxidant activities, phenolic and ?-carotene contents of sweet potato genotypes with varing flesh colours. Food Chemistry, v. 103, p. 829-838, 2007. TERAHARA, N.; KONCZAK-ISLAM, I.; NAKATANI, M.; YAMAKAWA, O.; GODA, Y.; HONDA, T. Anthocyanins in callus induced from purple storage root of Ipomoea batatas L. Phytochemistry, v. 54, p. 919-922, 2000. TERAHARA, N.; KONCZAK-ISLAM, I.; ONO, H.; YOSHIMOTO, M.; YAMAKAWA, O. Characterization of acylated anthocyanins in callus induced from storage root of purple-fleshed sweet potato, Ipomoea batatas L. Journal of Biomedicine and Biotechnology, v. 5, p. 279? 286, 2004. TERAHARA, N.; SHIMIZU, T.; KATO, Y.; NAKAMURA, M.; MAITANI, T.; YAMAGUCHI, M.; GODA, Y. Six Diacylated Anthocyanins from the Storage Roots of Purple Sweet Potato, Ipomoea batatas. Biosci. Biotechnol. Biochem., v. 63, n. 8, p. 1420-1424, 1999. TIAN, Q.; KONCZAK, I.; SCHWARTZ, S.J. Probing Anthocyanin Profiles in Purple Sweet Potato Cell Line (Ipomoea batatas L. Cv. Ayamurasaki) by High-Performance Liquid Chromatography and Electrospray Ionization Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, v. 53, p. 6503-6509, 2005. TRUONG, V. D.; HUA, Z.; THOMPSON, R.L.; YENCHO, G.C.; PECOTA, K.V. Pressurized liquid extraction and quantification of anthocyanins in purple-fleshed sweet potato genotypes. Journal of Food Composition and Analysis, v. 26, p. 96?103, 2012. TRUONG, V.-D., DEIGHTON, N.; THOMPSOM, R. T., MCFEETERS, R. F., DEAN, L. O.; PECOTA, K. V.; YENCHO, G. C. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweet potatoes by HPLC-DAD/ESI-MS/MS. J. Agric. Food Chem, v. 58, p. 404?410, 2010. TSUDA, T. Anthocyanins as Functional Food Factors - Chemistry, Nutrition and Health Promotion. Food Science Technology Research, v. 18, n. 3, p. 315 ? 324, 2012. VOJDANI, A; VOJDANI, C. Immune reactivity to food Coloring. Alternative Therapies in Health & Medicine, v. 21, n. S1, p. 52-63, 2015. WALLACE, T. C. Anthocyanins in Cardiovascular Disease. Advances in Nutrition, v. 2, p. 1?7, 2011. WANG, L.; ZHAO, Y.; ZHOU, Q.; LUO, C.-L.; DENG, A.-P.; ZHANG, Z.-C.; J.-L. Characterization and hepatoprotective activity of anthocyanins from purple sweet potato 151 (Ipomoea batatas L. cultivar Eshu No. 8). Journal of Food and Drug Analysis, v. 25, p. 607- 618, 2017. WANG, S.; NIE, S.; ZHU, F. Chemical constituents and health effects of sweet potato. Food Research International, v. 89, p. 90-116, 2016. WANG, Y.; LIU, F.; CAO, X.; CHEN, F.; HU, X.; LIAO, X. Comparison of hight hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innovative Food Science and Emerging Technologies, v. 16, p. 326?334, 2012. WANG, Z.; CLIFFORD, M. N.; SHARP, P. Analysis of chlorogenic acids in beverages prepared from Chinese health foods and investigation, in vitro, of effects on glucose absortion in cultures Caco-2 cells. Food Chemistry, v. 108, p. 369-373, 2008. XU, J.; SU, X.; LIM, S.; GRIFFIN, J.; CAREY, E.; KATZ, B.; TOMICH, J.; SMITH, J. S.; WANG, W. Characterization and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chemistry, v. 186, p. 90-96, 2015. YANG, Z.-W.; TANG, C.-E; ZHANG, J.-L; ZHOU, Q.; ZHANG, Z.-C. Stability and antioxidant activity of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No.8) subjected to simulated in vitro gastrointestinal digestion. International Journal of Food Science and Technology, v. 54, p. 2604-2614, 2019. YING, L.; JIA-YING, L; JING, L.; MI-LU, L.; ZHONG-HUA, L. Preparative Separation of Anthocyanins from Purple Sweet Potatoes by High-Speed Counter-Current Chromatography. Chin. J. Anal. Chem., v. 39, n. 6, p. 851?856, 2011. YOSHINAGA, M.; YAMAKAWA, O.; NAKATANI, M. Changes in Anthocyanin Content and Composition of Developing Storage Root of Purple-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam). Breeding Science, v. 50, p. 59-64, 2000. YOSHINAGA, M.; YAMAKAWA, O.; NAKATANI, M. Genotypic Diversity of Anthocyanin Content and Composition in purple-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam). Breeding Science, v. 49, p. 43-47,1999. ZHANG, J.L.; LUO, C.L.; ZHOU, Q.; ZHANG, Z.C. Isolation and identification of two major acylated anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) by UPLC-QTOF-MS/MS and NMR. International Journal of Food Science and Technology, v. 53, p. 1932?1941, 2018. ZHAO, J.-G.; YAN, Q.-Q.; XUE, R.-Y.; ZHANG, J.; ZHANG, Y.-Q. Isolation and identification of colourless caffeoyl compounds in purple sweet potato by HPLC-DAD-ESI/MS and their antioxidant activities. Food Chemistry, v. 161, p. 22-26, 2014. ZHU, Z; GUAN, Q.; KOUBAA, M.; BARBA, F. J.; ROOHINEJAD, S.; CRAVOTTO, G.; YANG, X.; LI, S.; HE, J. HPLC-DAD-ESI-MS2 analytical profile of extracts obtained from purple sweet potato after green ultrasound-assisted extraction. Food Chemistry, v. 215, p. 391- 400, 2017.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Ci?ncia e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/6934/4/2021+-+Monalisa+Santana+Coelho+de+Jesus.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/6934/3/2021+-+Monalisa+Santana+Coelho+de+Jesus.pdf.txt
http://localhost:8080/tede/bitstream/jspui/6934/2/2021+-+Monalisa+Santana+Coelho+de+Jesus.pdf
http://localhost:8080/tede/bitstream/jspui/6934/1/license.txt
bitstream.checksum.fl_str_mv 1d436c9df8dee444cbac2c6ff353f87d
db71177d34317d14540b808106f34b6c
45572492edf3ab067356f44352fdbd8a
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220403616153600