Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Corval, Amanda Rocha da Costa lattes
Orientador(a): G?lo, Patr?cia Silva lattes
Banca de defesa: G?lo, Patr?cia Silva lattes, Moraes, Aurea Maria Lage de lattes, Bittencourt, V?nia Rita Elias Pinheiro lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Ci?ncias Veterin?rias
Departamento: Instituto de Veterin?ria
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/5281
Resumo: Metarhizium anisopliae sl. is one of the most commonly used entomopathogenic fungi in the control of agricultural pests and has also shown promising results in tick tests, especially Rhipicephalus microplus. However, these agents may suffer from abiotic factors, such as high temperatures, fluctuations of humidity and UV-B radiation. In this way, the present work analyzed ten native isolates of Metarhizium spp., with the aim of: 1) verify the tolerance to the UV-B of the isolates, being in aqueous suspensions or oil-in-water emulsions; 2) to verify the tolerance to UV-B of the different propagules of these isolates; 3) to verify the viability of conidia in the soil after UV-B radiation; 4) to evaluate the mortality of R. microplus larvae after exposure of fungi to UV-B. The propagules (conidia, blastospores and microsclerotia) were exposed to UV-B radiation with a total dose of 4.0 kJ m-2 . Conidia suspended in water or oil-water emulsions were evaluated for germination 24 h and 48 h after exposure to UV-B. Conidia adsorbed on different soil types were evaluated for the presence of colony forming units (CFU) after seven days. Blastospores and microsclerotia were evaluated for the presence of CFUs (colony forming units) 72 h and 6 days after exposure to UV-B, respectively. We did not observe a pattern in the tolerance of the different propagules of Metarhizium spp., as the oil did not always protect the conidia of the irradiation. Our results suggest that the different types of soil tested provided UV-B protection to the isolates of Metarhizium spp., except for LCMS05, when adsorbed on soil type I. As for blastospores, LCMS05 was the only isolate that obtained moderate tolerance to irradiation (63.2% germination). Three isolates (LCMS05, LCMS08 and LCMS10) were more tolerant to UV-B when presented in the form of microsclerotia, with a CFC rate above 85%, but only the LCMS10 isolate was statistically equal to the non-exposed control, reaching the same number of CFUs. In the bioassay to verify the mortality of R. microplus larvae after exposure of the fungi to UV-B irradiation, the tested isolates (LCMS03 and LCMS08), although not showing statistical differences each other, obtained good results and showed potential to control R. microplus larvae. The data on UV-B tolerance of the same fungal isolate observed for different propagules, or the same fungal propagule exposed to UV-B in different circumstances, reveal important information not only on the relevance of the intrinsic tolerance of each isolate, but also different propagules of the same fungus. As far as we know, this is the first work analyzing the tolerance to UV-B of different propagules of the same fungal isolate. This study aims to support future research on the discovery of promising fungal isolates and propagules for biological control.
id UFRRJ-1_ea12d3c3095d9654b1de344b270accb9
oai_identifier_str oai:localhost:jspui/5281
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling G?lo, Patr?cia Silva058.507.577-83https://orcid.org/0000-0003-1854-7488http://lattes.cnpq.br/3935275742919097Fernandes, ?verton Kort Kamp071.248.587-20https://orcid.org/0000-0001-7062-3295http://lattes.cnpq.br/2135541732341157G?lo, Patr?cia Silva058.507.577-83https://orcid.org/0000-0003-1854-7488http://lattes.cnpq.br/3935275742919097Moraes, Aurea Maria Lage dehttp://lattes.cnpq.br/8851565681632879Bittencourt, V?nia Rita Elias Pinheirohttps://orcid.org/0000-0001-8473-8501http://lattes.cnpq.br/3888832724995864096.480.377-10https://orcid.org/0000-0001-6926-7916http://lattes.cnpq.br/6637801991603948Corval, Amanda Rocha da Costa2021-12-03T12:59:49Z2019-02-19CORVAL, Amanda Rocha da Costa. Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus. 2019. 42 f. Disserta??o (Mestrado em Ci?ncias Veterin?rias) - Instituto de Veterin?ria, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.https://tede.ufrrj.br/jspui/handle/jspui/5281Metarhizium anisopliae sl. is one of the most commonly used entomopathogenic fungi in the control of agricultural pests and has also shown promising results in tick tests, especially Rhipicephalus microplus. However, these agents may suffer from abiotic factors, such as high temperatures, fluctuations of humidity and UV-B radiation. In this way, the present work analyzed ten native isolates of Metarhizium spp., with the aim of: 1) verify the tolerance to the UV-B of the isolates, being in aqueous suspensions or oil-in-water emulsions; 2) to verify the tolerance to UV-B of the different propagules of these isolates; 3) to verify the viability of conidia in the soil after UV-B radiation; 4) to evaluate the mortality of R. microplus larvae after exposure of fungi to UV-B. The propagules (conidia, blastospores and microsclerotia) were exposed to UV-B radiation with a total dose of 4.0 kJ m-2 . Conidia suspended in water or oil-water emulsions were evaluated for germination 24 h and 48 h after exposure to UV-B. Conidia adsorbed on different soil types were evaluated for the presence of colony forming units (CFU) after seven days. Blastospores and microsclerotia were evaluated for the presence of CFUs (colony forming units) 72 h and 6 days after exposure to UV-B, respectively. We did not observe a pattern in the tolerance of the different propagules of Metarhizium spp., as the oil did not always protect the conidia of the irradiation. Our results suggest that the different types of soil tested provided UV-B protection to the isolates of Metarhizium spp., except for LCMS05, when adsorbed on soil type I. As for blastospores, LCMS05 was the only isolate that obtained moderate tolerance to irradiation (63.2% germination). Three isolates (LCMS05, LCMS08 and LCMS10) were more tolerant to UV-B when presented in the form of microsclerotia, with a CFC rate above 85%, but only the LCMS10 isolate was statistically equal to the non-exposed control, reaching the same number of CFUs. In the bioassay to verify the mortality of R. microplus larvae after exposure of the fungi to UV-B irradiation, the tested isolates (LCMS03 and LCMS08), although not showing statistical differences each other, obtained good results and showed potential to control R. microplus larvae. The data on UV-B tolerance of the same fungal isolate observed for different propagules, or the same fungal propagule exposed to UV-B in different circumstances, reveal important information not only on the relevance of the intrinsic tolerance of each isolate, but also different propagules of the same fungus. As far as we know, this is the first work analyzing the tolerance to UV-B of different propagules of the same fungal isolate. This study aims to support future research on the discovery of promising fungal isolates and propagules for biological control.Metarhizium anisopliae sl. ? um dos fungos entomopatog?nicos mais utilizados no controle de pragas agr?colas e tem apresentado, tamb?m, resultados promissores em testes contra carrapatos, especialmente Rhipicephalus microplus. Por?m, estes agentes podem sofrer com fatores abi?ticos, como altas temperaturas, flutua??es de umidade e radia??o UV-B. Desta maneira, o presente trabalho analisou dez isolados nativos de Metarhizium spp., com o objetivo de: 1) verificar a toler?ncia ? UV-B dos isolados, estando eles em suspens?es aquosas ou emuls?es ?leo-?gua; 2) verificar a toler?ncia ? UV-B dos diferentes prop?gulos destes isolados; 3) verificar a viabilidade de con?dios no solo ap?s a??o da radia??o UV-B; 4) avaliar a mortalidade de larvas de R. microplus ap?s exposi??o dos fungos ? UV-B. Os prop?gulos (con?dios, blastosporos e microescler?dios) foram expostos ? radia??o UV-B com dose total de 4,0 kJ m-2 . Con?dios suspensos em ?gua ou em emuls?es ?leo-?gua foram avaliados quanto ? germina??o 24h e 48h ap?s exposi??o ? UV-B. Con?dios adsorvidos em diferentes tipos de solo foram avaliados quanto ? presen?a de unidades formadoras de col?nias (UFC) ap?s sete dias. Blastosporos e microescler?dios foram avaliados quanto ? presen?a de UFC (unidades formadoras de col?nias) 72h e 6 dias ap?s exposi??o ? UV-B, respectivamente. N?o observamos um padr?o na toler?ncia dos diferentes prop?gulos de Metarhizium spp., assim como o ?leo nem sempre protegeu os con?dios da irradia??o. Nossos resultados sugerem que os diferentes tipos de solo testados forneceram prote??o ? UV-B aos isolados de Metarhizium spp., exceto ao LCMS05, quando adsorvido no solo tipo I. Quanto aos blastosporos, LCMS05 foi o ?nico isolado que obteve toler?ncia moderada ? irradia??o (63,2% de germina??o). Tr?s isolados (LCMS05, LCMS08 e LCMS10) foram mais tolerantes ? UV-B, quando apresentados sob a forma de microescler?dios, com taxa de UFC superior a 85%, por?m somente o isolado LCMS10 foi estatisticamente igual ao controle n?o exposto, atingindo o mesmo n?mero de UFC. No bioensaio para verifica??o da mortalidade de larvas de R. microplus ap?s exposi??o dos fungos ? irradia??o UV-B, os isolados testados (LCMS03 e LCMS08) mesmo n?o apresentando diferen?as estat?sticas entre si, obtiveram bons resultados e demonstraram potencial para controlar larvas de R. microplus. Os dados sobre a toler?ncia ? UV-B do mesmo isolado f?ngico aqui observado para diferentes prop?gulos, ou o mesmo prop?gulo f?ngico exposto ? UV-B em diferentes circunst?ncias, revelam informa??es importantes n?o apenas sobre a relev?ncia da toler?ncia intr?nseca de cada isolado, mas tamb?m varia??es que diferentes prop?gulos do mesmo fungo possuem. At? onde sabemos, este ? o primeiro trabalho analisando a toler?ncia ? UV-B de diferentes prop?gulos do mesmo isolado f?ngico. Este estudo pretende auxiliar pesquisas futuras sobre a descoberta de isolados f?ngicos e prop?gulos promissores para o controle biol?gico.Submitted by Leticia Schettini (leticia@ufrrj.br) on 2021-12-03T12:59:48Z No. of bitstreams: 1 2019 - Amanda Rocha da Costa Corval.pdf: 1207006 bytes, checksum: e125f8a731dc244d83b5bb27fc66aea4 (MD5)Made available in DSpace on 2021-12-03T12:59:49Z (GMT). No. of bitstreams: 1 2019 - Amanda Rocha da Costa Corval.pdf: 1207006 bytes, checksum: e125f8a731dc244d83b5bb27fc66aea4 (MD5) Previous issue date: 2019-02-19Item withdrawn by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-02-21T12:06:03Z Item was in collections: Mestrado em Ci?ncias Veterin?rias (ID: 39) No. of bitstreams: 3 2019 - Amanda Rocha da Costa Corval.pdf.jpg: 3600 bytes, checksum: 25015b4f0d7a4e22cdde8bd033601ff5 (MD5) 2019 - Amanda Rocha da Costa Corval.pdf.txt: 121699 bytes, checksum: b9ff54680b21a268903bd8c151e13a14 (MD5) 2019 - Amanda Rocha da Costa Corval.pdf: 1207006 bytes, checksum: e125f8a731dc244d83b5bb27fc66aea4 (MD5)Item reinstated by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-06-19T23:20:30Z Item was in collections: Mestrado em Ci?ncias Veterin?rias (ID: 39) No. of bitstreams: 3 2019 - Amanda Rocha da Costa Corval.pdf.jpg: 3600 bytes, checksum: 25015b4f0d7a4e22cdde8bd033601ff5 (MD5) 2019 - Amanda Rocha da Costa Corval.pdf.txt: 121699 bytes, checksum: b9ff54680b21a268903bd8c151e13a14 (MD5) 2019 - Amanda Rocha da Costa Corval.pdf: 1207006 bytes, checksum: e125f8a731dc244d83b5bb27fc66aea4 (MD5)CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/67732/2019%20-%20%20Amanda%20Rocha%20da%20Costa%20Corval.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Ci?ncias Veterin?riasUFRRJBrasilInstituto de Veterin?riaAHMED, S.I.; LEATHER, S.R. Suitability and potential of entomopathogenic microorganisms for forest pest management?some points for consideration. International Journal of Pest Management, v. 40, n. 4, p. 287-292, 1994. ALKHAIBARI, A.M.; CAROLINO, A.T.; YAVASOGLU, S.I.; MAFFEIS, T.; MATTOSO, T.C.; BULL, J.C.; SAMUELS, R.I.; BUTT, T.M. Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae :attack on several fronts accelerates mortality. PLoS Pathogens, v. 12, n. 7, 2016. ALKHAIBARI, A.M.; CAROLINO, A.T.; BULL, J.C.; SAMUELS, R.I.; BUTT, T.M. Differential pathogenicity of Metarhizium blastospores and conidia against larvae of three mosquito species. Journal of Medical Entomology, v. 54, n. 3, 2017. ALVES, S. B. Controle microbiano de insetos. Piracicaba, SP: FEALQ, 1998, 1163p. ALVES, R.T.; BATEMAN, R.P.; PRIOR, C.; LEATHER, S.R. Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulations. Crop Protection, v. 17, p. 675-679, 1998. ANGELO, I.C.; FERNANDES, E.K.K.; BAHIENSE, T.C.; PERINOTTO, W.M.S.; MORAES, A.P.R.; TERRA, A.L.M.; BITTENCOURT, V.R.E.P. Efficiency of Lecanicillium lecanii to control the tick Rhipicephalus microplus. Veterinary Parasitology, v. 172, p. 317- 322, 2010. AW, K.M.S.; HUE, S.M. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. Journal of Fungi, v. 3, n. 30, 2017. BAHIENSE, T.C.; FERNANDES, E.K.K.; ANGELO, I.C.; PERINOTTO, W.M.S.; BITTENCOURT, V.R.E.P. Avalia??o do potencial de controle biol?gico do Metarhizium anisopliae sobre Boophilus microplus em teste de est?bulo. Revista Brasileira de Parasitologia Veterin?ria, v. 16, n. 4, p. 243-245, 2007. 31 BEHLE, R.W.; JACKSON, M.A.; FLOR-WEILER, L.B. Efficacy of a Granular Formulation Containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) Microsclerotia Against Nymphs of Ixodes scapularis (Acari: Ixoididae). Biological and Microbial Control, v. 106, n.1, p.57-63, 2013. BERNARDO, C.C, BARRETO L.P, e SILVA, C.d S.R., LUZ, C, ARRUDA, W, FERNANDES, E.K.K., Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus, Ticks and Tick-borne Diseases (2018), https://doi.org/10.1016/j.ttbdis.2018.06.001. BEYS DA SILVA, W.O.; SANTI, L.; SCHRANK, A.; VAINSTEIN, M.H. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. British Mycological Society, v. 114, p. 10-15, 2010. BIEGELMEYER, P.; NIZOLI, L.Q.; CARDOSO, F.F.; DIONELLO, N.J.L. Aspectos da resist?ncia de bovinos ao carrapato Rhipicephalus (Boophilus) microplus. Archivos de zootecnia. V. 61, p. 1-11, 2012. BISCHOFF, J.F.; REHNER, S.A.; HUMBER, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, v. 101, n. 4, p. 512-530, 2009. BITTENCOURT, V.R.E.P.; MASSARD, C.L.; LIMA, A.F. Uso do fungo Metarhizium anisopliae (Metschnikoff, 1879) Sorokin, 1883, no controle do carrapato Boophilus microplus (Canestrini, 1887). Arquivo da Universidade Rural do Rio de Janeiro, v. 15, p. 197-202, 1992. BITTENCOURT, V.R.E.P.; MASSARD, C.L.; LIMA, A.F. A??o do fungo Metarhizium anisopliae sobre a fase n?o parasit?ria do ciclo biol?gico de Boophilus microplus. Rev. Univ. Rural, S?r. Ci?nc. da Vida, v. 16, p. 49-55, 1994. BRAGA, G.U.L.; FLINT, S.D.; MESSIAS, C.L.; ANDERSON, A.J.; ROBERTS, D.W. Effect of UV-B on conidia and germlings of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycology Research, v. 105, n. 7, p. 874 ? 882, 2001a. 32 BRAGA, G.U.L.; FLINT, S.D.; MILLER, C.D.; ANDERSON, A.J.; ROBERTS, D.W. Both Solar UVA and UVB Radiation Impair Conidial Culturability and Delay Germination in the entomopathogenic Fungus Metarhizium anisopliae. Photochemistry and Photobiology, v. 74, n. 5, p. 734-739, 2001b. BRAGA, G.U.L.; RANGEL, D.E.N.; FERNANDES, E.K.K.; FLINT, S.D.; ROBERTS, D.W. Molecular and physiological effects of environmental UV radiation on fungal conidia. Current Genetics, v.61, n. 3, p. 405-425, 2015. BRUCK, D.J. Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: implications for pest management. Biological Control, v. 32, p. 155-163, 2004. CAMARGO, M.G.; G?LO, P.S.; ANGELO, I.C.; PERINOTTO, W.M.S.; S?, F.A.; QUINELATO, S.; BITTENCOURT, V.R.E.P. Effect of oil-based formulations of acaripatogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Veterinary Parasitology, v. 188, p. 140 ? 147, 2012. CAMARGO, M.G.; MARCIANO, A.F.; S?, F.A.; PERINOTTO, W.M.S.; QUINELATO, S.; GOLO, P.S.; ANGELO, I.C.; PRATA, M.C.A.; BITTENCOURT, V.R.E.P. Commercial formulation of Metarhizium anisopliae for the control of Rhipicephalus microplus in a pen study. Veterinary Parasitology, v. 205, p. 271-276, 2014. CAMARGO, M.G.; NOGUEIRA, M.R.S.; MARCIANO, A.F.; PERINOTTO, W.M.S.; COUTINHO-RODRIGUES, C.J.B.; SCOTT, F.B.; ANGELO, I.C.; PRATA, M.C.A.; BITTENCOURT, V.R.E.P. Metarhizium anisopliae for controlling Rhipicephalus microplus ticks under field conditions. Veterinary Parasitology, v. 223, p. 38-42, 2016. COHEN, E.; JOSEPH, T.; KAHANA, F.; MAGDASSI, S. Photostabilization of an entomopathogenic fungus using composite clay matrices. Photochemistry and Photobiology, v. 77, p. 180-185, 2003. 33 COLEY-SMITH, J.R.; COOKE, R.C. Survival and germination of fungal sclerotia. In: Horsfall JG, Baker KF, Zentmyer GA (eds), Annual Review of Phytopathology. Annual Reviews Inc., Palo Alto, CA, USA, p. 65-92, 1971. FARGUES, J.; ROUGIER, M.; GOUJET, R.; SMITS, N.; COUSTERE, C.; ITIER, B. Inactivation of Conidia of Paecilomyces fumosoroseus by Near-Ultraviolet (UVB and UVA) and Visible Radiation. Journal of Invertebrate Pathology, v. 69, p. 70-78, 1997. FERNANDES, E.K.K.; COSTA, G.L.; SOUZA, E.J.; MORAES, A.M.; BITTENCOURT, V.R.E.P. Beauveria bassiana isolated from engorged females and tested against eggs and larvae of Boophilus microplus (Acari: Ixodidae). J Basic Microbiol, v. 43, n.5, 2003. FERNANDES, E.K.K.; KEYSER, C.A.; CHONG, J.P.; RANGEL, D.E.N.; MILLER, M.P.; ROBERTS, D.W. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. Journal of Applied Microbiology, v. 108, p. 115 ? 128, 2010. FERNANDES, E.K.K.; ANGELO, I.C.; RANGEL, D.E.N.; BAHIENSE, T.C.; MORAES, A.M.L.; ROBERTS, D.W.; BITTENCOURT, V.R.E.P. An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Veterinary Parasitology, v. 182, p. 307-318, 2011. FERNANDES, E.K.K.; BITTENCOURT, V.R.E.P.; ROBERTS, D.W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Experimental Parasitology, v. 130, p. 300-305, 2012. FERNANDES, E.K.K.; RANGEL, D.E.N.; BRAGA, G.U.L.; ROBERTS, D.W. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Current Genetics, 2015. FERREIRA, L. L.; SOARES, S. F.; FILHO, J. G. O.; OLIVEIRA, T. T.; L?ON, A. A. P.; BORGES, L. M. F. Role of Rhipicephalus microplus cheliceral receptors in gustation and host differentiation. Ticks and Tick-borne Diseases. v. 6, p. 228-233, 2015. 34 FRASER, D.P.; SHARMA, A.; FLETCHER, T.; BUDGE, S.; MONCRIEFF, C.; DODD, A.N.; FRANKLIN, K.A. UV-B antagonises shade avoidance and increases levels of the flavonoid quercetin in coriander (Coriandrum sativum). Scientific Reports, v.7, n.17758, 2017. FURLONG, J.; PRATA, M.C.A. Conhecimento b?sico para controle do carrapato-dosbovinos. In: FURLONG, J. (Org.). Carrapatos: problemas e solu??es. Juiz de Fora: Embrapa Gado de Leite. p. 9-20, 2005. GARCIA, M.V.; MONTEIRO, A.C.; SZAB?, M.P.J.; MOCHI, D.A.; SIMI, L.D.; CARVALHO, W.M.; TSURUTA, S.A.; BARBOSA, J.C. Effect of Metarhizium anisopliae fungus on off-host Rhipicephalus (Boophilus) microplus from tick-infested pasture under cattle grazing in Brazil. Veterinary Parasitology, v. 181, p. 267-273, 2011. GESSLER, N.N.; EGOROVA, A.S.; BELOZERSKAYA, T.A. Melanin Pigments of Fungi under Extreme Environmental Conditions (Review). Apllied Biochemistry and Microbiology, v.50, n.2, p.105-113, 2014. GHANIZADEH-KAZEROUNI, E.; FRANKLIN, C.E.; SEEBACHER, F. Living in flowing water increases resistance to ultraviolet B radiation. The Company of Biologists. V. 220, p. 582-587, 2017. GOBLE, T.A.; GARDESCU, S.; FISHER, J.J.; JACKSON, M.A.; HAJEK, A.E. Conidial production, persistence and pathogenicity of hydromulch formulations of Metarhizium brunneum F52 microsclerotia under forest conditions. Biological Control, 2016, doi: http://dx.doi.org/10.1016/j.biocontrol.2016.01.003. GRISI, L.; LEITE, R.C.; MARTINS, J.R.S.; BARROS, A.T.M.; ANDREOTTI, R.; CAN?ADO, P.H.D.; LE?N, A.A.P.; PEREIRA, J.B.; VILLELA, H.S. Reassessment of the potencial economic impact of cattle parasites in Brazil. Braz. J. Vet. Parasitol., Jaboticabal v.23, n.2, p.150-156, 2014. 35 HALLSWORTH, J.E.; MAGAN, N. Culture Age, Temperature, and pH Affect the Polyol and Trehalose Contents of Fungal Propagules. Applied Environmental Microbiology, v. 62, p. 2435-2442, 1996. HUMBER, R.A. Fungi: Identification. In: Manual Of Techniques In Insect Pathology, Academic Press, p. 153 ? 185, 1997. IGNOFFO, C.M.; HOSTETTER, D.L.; SIKOROWSKI, P.P.; SUTTER, G.; BROOKS, W.M. Inactivation of Representative Species of Entomopathogenic Viruses, a Bacterium, Fungus, and Protozoan by an Ultraviolet Light Source. Environmental Entomology, v. 6, n. 3, p. 411-415, 1977. JACKSON, M.A.; JARONSKI, S.T. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. British Mycological Society, v.113, p. 842-850, 2009. JACKSON, M.A.; JARONSKI, S.T. Development of pilot-scale fermentation and stabilization processes for the production of microsclerotia of the entomopathogenic fungus Metarhizium brunneum strain F52. Biocontrol Science and Technology, v. 22, n. 8, p. 915- 930, 2012. JACKSON, M.A.; PAYNE, A.R. Liquid Culture Production of Fungal Microsclerotia. In: GLARE, T.T. and MORAN-DIEZ, M. E. (eds.) Microbial-Based Biopesticides: Methods and Protocols, Methods in Molecular Biology, New York, v. 1477, p. 71-83, 2016. JARONSKI, S.T. Soil Ecology of the Entomopathogenic Ascomycetes: A Critical Examination of What We (Think) We Know. In: EKESI, S. and MANIANIA, N.K., editors. Use of Entomopathogenic Fungi in Biological Pest management: Research Signpost, p. 91-144, 2007. JENKINS, G.I. Signal Transduction in responses to UV-B radiation. Annual Review of Plant Biology, v. 60, p. 407-431, 2009. 36 JENKINS, G.I. Photomorphogenic responses to ultraviolet-B light. Plant, Cell & Environment, doi: 10.1111/pce.12934, 2017 [Epub ahead of print] KIM, J.S.; JE, Y.H.; SKINNER, M.; PARKER, B.L. An oil-based formulation of Isaria fumosorosea blastospores for management of greenhouse whitefly Trialeurodes vaporariorum (Homoptera:Aleyrodidae). Pest Manag Sci, v. 69, p. 576-581, 2013. LANZA, L.M.; MONTEIRO, A.C.; MALHEIROS, E.B. Popula??o de Metarhizium anisopliae em diferentes tipos e graus de compacta??o do solo. Ci?ncia Rural, v. 34, n. 6, p. 1757-1762, 2004. LECLERC, J-B, PINTO SILVA, J, DETRAIN, C. Impact of soil contamination on the growth and shape of ant nests. Royal Society open science, 5, 2018. LEEMON, D.M.; JONSSON, N.N. Laboratory studies on Australian isolates of Metarhizium anisopliae as a biopesticide for the cattle tick Boophilus microplus. Journal of Invertebrate Pathology, n. 97, p. 40-49, 2008. LEEMOM, D.M.; TURNER, L.B.; JONSSON, N.N. Pen studies on the control of cattle tick (Rhipicephalus (Boophilus) microplus) with Metarhizium anisopliae (Sorokin). Veterinary Parasitology, v. 156, p. 248-260, 2008. LONC, E.; GUZ-REGNER, K.; KIEWRA, D.; SZCZEPANSKA, A. Insight into tick biocontrol with special regard to fungi. Annals of Parasitology, v. 60, n. 3, p. 169-177, 2014. LOPES, R.B.; SOUZA, D.A.; ROCHA, L.F.N.; MONTALVA, C. LUZ, C.; HUMBER, R.A.; FARIA, M. The entomopathogenic genus Metarhizium has been defined morphologically by the presence of densely packed hymenia of candelabrum-like, broadly branched conidiophores with cylindrical to clavate phialides producing green conidia in prismatic columns to dense plates. Journal of Invertebrate Pathology, v.151, p. 165-168, 2018. LUZ, C.; D?ALESSANDRO, W.B.; RODRIGUES, J.; FERNANDES, E.K.K. Efficacy of water- and oil-in-water-formulated Metarhizium anisopliae in Rhipicephalus sanguineus eggs and eclosing larvae. Parasitology Research, 2015 37 MASCARIN, G.M.; KOBORI, N.N.; VITAL, R.C.J.; JACKSON, M.A.; QUINTELA, E.D. Production of microsclerotia by brazilian strains of Metarhizium spp. using submerged liquid culture fermentation. World Journal Microbiology Biotechnology, 2013. MASCARIN, G.M.; BIAGGIONI LOPES, R.; DELALIBERA, I. JR.; KORT KAMP FERNANDES, E.; LUZ, C.; FARIA, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology, 2018. MILLER, M.E.; SHISHKOFF, N.; CUBETA, M.A. Thermal sensitivity of Calonectria henricotiae and Calonectria pseudonaviculata conidia and microsclerotia. Mycology, v. 110, n. 3, p. 546-558, 2018. MOCHI, D.A.; MONTEIRO, A.C., DE BORTOLI, S.A.; D?RIA, H.O.S.; BARBOSA, J.C. Pathogenicity of Metarhizium anisopliae for Ceratitis capitata (Wied.) (Diptera: Tephritidae) in Soil with Different Pesticides. Neotropical entomology, v. 35, n. 3, p. 382-389, 2006. MOORE, D.; BRIDGE, P.D.; HIGGINS, P.M.; BATEMAN, R.P.; PRIOR, C. Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Annual Applied Biology, v. 122, p. 605-616, 1993. MOSSA, A.T.W.; AFIA, S.I.; MOHAFRASH, S.M.M.; ABOU-AWAD, B.A. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae). Environmental Science and Pollution Research, v.25, p. 10526-10537, 2017. NASCIMENTO, E.; SILVA, S.H.; MARQUES, E.R.; ROBERTS, D.W.; BRAGA, G.U.L. Quantification of Cyclobutane Pyrimidine Dimers Induced by UVB Radiation in Conidia of the Fungi Aspergillus fumigatus, Aspergillus nidulans, Metarhizium acridum and Metarhizium robertsii. Photochemistry and Photobiology, v. 86, p. 1259-1266, 2010. 38 OJEDA-CHI, M.M.; RODRIGUEZ-VIVAS, R.I.; GALINDO-VELASCO, E.; LEZAMAGUTI?RREZ, R. Laboratory and Field evaluation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) for the control of Rhipicephalus microplus (Acari: Ixodidae) in the Mexican tropics. Veterinary Parasitology, v. 170, p. 348-354, 2010. PAIX?O, F.R.S.; MUNIZ, E.R.; BARRETO, L.P.; BERNARDO, C.C.; MASCARIN, G.M.; LUZ, C.; FERNANDES, E.K.K. Increased heat tolerance afforded by oil-based conidial formulations of Metarhizium anisopliae and M. robertsii. Biocontrol Science and Technology, DOI: 10.1080/09583157.2017.1281380, 2017. PAUL, N.D.; GWYNN-JONES, D. Ecological roles of solar UV radiation: towards an integrated approach. TRENDS in Ecology and Evolution, v. 18, n. 1, p. 48-55, 2003. PEREIRA-JUNIOR, R.R.; HUARTE-BENNET, C.; PAIX?O, F.R.S.; ROBERTS, D.W.; LUZ, C.; PEDRINI, N.; FERNANDES, ?.K.K. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes. Journal of Applied Microbiology, v. 125, p. 159-171, 2018. PERINOTTO, W.M.S.; ANGELO, I.C.; GOLO, P.S.; QUINELATO, S.; CAMARGO, M.G.; S?, F.A.; BITTENCOURT, V.R.E.P. Susceptibility of different populations of ticks to entomopathogenic fungi. Experimental Parasitology. v.130, p. 257-260, 2011. POLAR, P.; KAIRO, M.T.K.; MOORE, D.; PEGRAM, R.; JOHN, S-A. Comparison of water, oils and emulsifiable adjuvant oils as formulating agents for Metarhizium anisopliae for use in control of Boophilus microplus. Mycopathologia, v. 160, p. 151 ? 157, 2005. QUAITE, F.E., SUTHERLAND, B.M.; SUTHERLAND, J.C. Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature, v. 358, p. 576?578, 1992. QUINELATO, S.; GOLO, P.S.; PERINOTTO, W.M.S.; S?, F.A.; CAMARGO, M.G.; ANGELO, I.C.; MORAES, A.M.L.; BITTENCOURT, V.R.E.P. Virulence potential of Metarhizium anisopliae s.l. isolates on Rhipicephalus (Boophilus) microplus larvae. Veterinary Parasitology, v. 190, p. 556-565, 2012. 39 RANGEL, D.E.N.; BRAGA, G.U.L.; FLINT, S.D.; ANDERSON, A.J.; ROBERTS, D.W. Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates. Journal of Invertebrate Pathology,v. 87, p. 77- 83, 2004. RANGEL, D.E.N.; BRAGA, G.U.L.; ANDERSON, A.J.; ROBERTS, D.W. ) Influence of growth environment on tolerance to UV-B radiation, germination speed, and morphology of Metarhizium anisopliae var. acridum conidia. Journal of Invertebrate Pathology, v. 90, p. 55-58, 2005. RANGEL, D.E.N.; ANDERSON, A.; BRAGA, G.U.L.; ROBERTS, D.W. Mutants and isolates of Metarhizium anisopliae are diverse in their relationship between conidial pigmentation and stress... Journal of Invertebrate Pathology, v. 93, p. 170-182, 2006. RANGEL, D.E.N.; ANDERSON, A,J.; ROBERTS, D.W. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycological Research, v. 112, p. 1362-1372, 2008. RANGEL, D.E.N.; FERNANDES, E.K.K.; BRAGA, G.U.L.; ROBERTS, D.W. Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiology Letters, v.315, p. 81-86, 2011. ROBERTS, D.W.; ST.LEGER, R. Metarhizium spp., Cosmopolitan Insect-Pathogenic Fungi: Mycological Aspects. Advances in applied microbiology, v. 54, 2004. RODR?GUEZ, P. B. R.; CRUZ, R. R.; GARC?A, D. I. D.; GUTI?RREZ, R. H.; QUINTANILLA, R. E. L.; SAHAGUN, D. O.; CASTILLO, C. G.; ORTEGA, A. G.; RODR?GUEZ, S. E. H.; CARDONA, A. V.; VEL?ZQUEZ, M. M. Identification of immunogenic proteins from ovarian tissue and recognized in larval extracts of Rhipicephalus (Boophilus) microplus, through na immunoproteomic approach. Experimental Parasitology, v. 170, p. 227-235, 2016. 40 SAMISH, M.; REHACEK, J. Pathogens and predators of ticks and their potential in biological control. Annual Reviews Entomology, v. 44, p.159-182, 1999. SAMISH, M.; ROT, A.; MENT, D.; BAREL, S.; GLAZER, I.; GINDIN, G. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions. Veterinary Parasitology, v. 206, p. 258-266, 2014. SASAN, R.K. BIDOCHKA, M.J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, v. 99, n.1, p. 101 ? 107, 2012. SCHRANK, A.; VAINSTEIN, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon, v. 56, p. 1267-1274, 2010. SHANG, Y.; DUAN, Z.; HUANG, W.; GAO, Q.; WANG, C. Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with na exogenous tyrosinase gene. Journal of Invertebrate Pathology?, V.109, p.105-109, 2012. SONG, Z.; ZHONG Q.; YIN, Y.; SHEN, L.; LI, Y.; WANG, Z. The high osmotic response and cell wall integrity pathways cooperate to regulate morphology, microsclerotia development, and virulence in Metarhizium rileyi. Scientific Reports, 2016. ST. LEGER, R.J. Studies on adaptations of Metarhizium anisopliae to life in the soil. Journal of Invertebrate Pathology, v. 98, p. 271-276, 2008. SUTHAPARAN, A.; PATHAK. R.; SOLHAUG, K.A.; GISLEROD, H.R. Wavelength dependent recovery of UV-mediated damage: tying up the loose ends of optical based powdery mildew management. Journal of Photochemistry & Photobiology, doi: 10.1016/j.jphotobiol.2017.12.018 [Epud ahead of print]. TIAGO, P.V.; OLIVEIRA, N.T.; LIMA, E.A.L.A. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects. Ci?ncia Rural, v. 44, n. 4, p. 645-651, 2014. 41 TIRLONE, L.; KIM, T.K.; COUTINHO, M.L.; ALI, A.; SEIXAS, A.; TERMIGNONI, C.; MULENGA, A.; VAZ JR, I.S. The putative role of Rhipicephalus microplus salivary serpins in the tick-host relationship. Insect Biochemistry and Molecular Biology, v. 71, p. 12-28, 2016. TUPE, S.G.; PATHAN, E.K; DESHPANDE, M.V. Development of Metarhizium anisopliae as a Mycoinsecticide: From Isolation to Field Performance. Journal of Visualized Experiments (125), e55272, 2017. WANG, H.; LEI, Z.; REITZ, S.; LI, Y.; XU, X. Production of microsclerotia of the fungal entomopathogen Lecanicillium lecanii (Hypocreales: Cordycipitaceae) as a biological control agent against soil-dwelling stages of Frankliniella occidentalis (Thysanoptera: Thripidae). Biocontrol Science and Technology, v. 23, n. 2, p. 234 ? 238, 2013. WEBSTER, A.; RECK, J.; SANTI, L.; SOUZA, U.A.; DALL?AGNOL, B.; KLAFKE, G.M.; BEYS-DA-SILVA, W.O.; MARTINS, J.R.; SCHRANK, A. Integrated control of an acaricide-resistant strain of the cattle tick Rhipicephalus microplus by applying Metarhizium anisopliae associated with cypermethrin and chlorpyriphos under field conditions. Veterinary Parasitology, v. 207, p. 302-308, 2015. WILLIAMSON, C.E.; ZEPP, R.G.; LUCAS, R.M.; MADRONICH, S.; AUSTIN, A.T.; BALLAR?, C.L.; NORVAL, M.; SULZBERGER, B.; BAIS, A.F.; MCKENZIE, R.L.; ROBINSON, S.A.; H?DER, D-P.; PAUL, N.D.; BORNMAN, J.F. Solar ultraviolet radiation in a changing climate. Nature Climate Change, v. 4, p. 434-441, 2014. YU, X.; HUO, L.; LIU, H.; CHEN, L.; WANG, Y.; ZHU, X. Melanin is required for the formation of the multi-cellular conidia in the endophytic fungus Pestalotiopsis microspora. Microbiological Research. V.179, p.1-11, 2015. ZIMMERMANN, G. Effect of High Temperatures and Artificial Sunlight on the Viability of Conidia of Metarhizium anisopliae. Journal of Invertebrate Pathology, v. 40, p. 36-40, 1982. 42 ZIMMERMAN, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, v. 17, n. 9, p. 879-920, 2007. ZHOU, B-B.S.; ELLEDGE, S.J. The DNA damage response: putting checkpoints in perspective. Nature, v. 408, p. 433-439, 2000. ZHOU, R.; ZHOU, X.; FAN, A.; WANG, Z.; HUANG, B. Differential functions of two metalloproteses, Mrmep1 and Mrmep2, in growth, sporulation, cell wall integrity, and virulence in the filamentous fungi Metarhizium robertsii. Frontiers in microbiology, v. 9, n. 1528, 2018.Carrapato dos bovinosFungos entomopatog?nicosFatores abi?ticosCattle tickEntomopathogenic fungiAbiotic factorsMedicina Veterin?riaParasitologiaCaracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplusCharacterization of the tolerance of different propagules of Metarhizium spp. to UV-B radiation and evaluation of the virulence of conidia exposed against Rhipicephalus microplus larvaeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Amanda Rocha da Costa Corval.pdf.jpg2019 - Amanda Rocha da Costa Corval.pdf.jpgimage/jpeg3600http://localhost:8080/tede/bitstream/jspui/5281/4/2019+-++Amanda+Rocha+da+Costa+Corval.pdf.jpg25015b4f0d7a4e22cdde8bd033601ff5MD54TEXT2019 - Amanda Rocha da Costa Corval.pdf.txt2019 - Amanda Rocha da Costa Corval.pdf.txttext/plain121699http://localhost:8080/tede/bitstream/jspui/5281/3/2019+-++Amanda+Rocha+da+Costa+Corval.pdf.txtb9ff54680b21a268903bd8c151e13a14MD53ORIGINAL2019 - Amanda Rocha da Costa Corval.pdf2019 - Amanda Rocha da Costa Corval.pdfapplication/pdf1207006http://localhost:8080/tede/bitstream/jspui/5281/2/2019+-++Amanda+Rocha+da+Costa+Corval.pdfe125f8a731dc244d83b5bb27fc66aea4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/5281/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/52812022-06-19 20:20:32.295oai:localhost:jspui/5281Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-06-19T23:20:32Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus
dc.title.alternative.eng.fl_str_mv Characterization of the tolerance of different propagules of Metarhizium spp. to UV-B radiation and evaluation of the virulence of conidia exposed against Rhipicephalus microplus larvae
title Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus
spellingShingle Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus
Corval, Amanda Rocha da Costa
Carrapato dos bovinos
Fungos entomopatog?nicos
Fatores abi?ticos
Cattle tick
Entomopathogenic fungi
Abiotic factors
Medicina Veterin?ria
Parasitologia
title_short Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus
title_full Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus
title_fullStr Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus
title_full_unstemmed Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus
title_sort Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus
author Corval, Amanda Rocha da Costa
author_facet Corval, Amanda Rocha da Costa
author_role author
dc.contributor.advisor1.fl_str_mv G?lo, Patr?cia Silva
dc.contributor.advisor1ID.fl_str_mv 058.507.577-83
https://orcid.org/0000-0003-1854-7488
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3935275742919097
dc.contributor.advisor-co1.fl_str_mv Fernandes, ?verton Kort Kamp
dc.contributor.advisor-co1ID.fl_str_mv 071.248.587-20
https://orcid.org/0000-0001-7062-3295
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2135541732341157
dc.contributor.referee1.fl_str_mv G?lo, Patr?cia Silva
dc.contributor.referee1ID.fl_str_mv 058.507.577-83
https://orcid.org/0000-0003-1854-7488
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3935275742919097
dc.contributor.referee2.fl_str_mv Moraes, Aurea Maria Lage de
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/8851565681632879
dc.contributor.referee3.fl_str_mv Bittencourt, V?nia Rita Elias Pinheiro
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0001-8473-8501
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3888832724995864
dc.contributor.authorID.fl_str_mv 096.480.377-10
https://orcid.org/0000-0001-6926-7916
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6637801991603948
dc.contributor.author.fl_str_mv Corval, Amanda Rocha da Costa
contributor_str_mv G?lo, Patr?cia Silva
Fernandes, ?verton Kort Kamp
G?lo, Patr?cia Silva
Moraes, Aurea Maria Lage de
Bittencourt, V?nia Rita Elias Pinheiro
dc.subject.por.fl_str_mv Carrapato dos bovinos
Fungos entomopatog?nicos
Fatores abi?ticos
topic Carrapato dos bovinos
Fungos entomopatog?nicos
Fatores abi?ticos
Cattle tick
Entomopathogenic fungi
Abiotic factors
Medicina Veterin?ria
Parasitologia
dc.subject.eng.fl_str_mv Cattle tick
Entomopathogenic fungi
Abiotic factors
dc.subject.cnpq.fl_str_mv Medicina Veterin?ria
Parasitologia
description Metarhizium anisopliae sl. is one of the most commonly used entomopathogenic fungi in the control of agricultural pests and has also shown promising results in tick tests, especially Rhipicephalus microplus. However, these agents may suffer from abiotic factors, such as high temperatures, fluctuations of humidity and UV-B radiation. In this way, the present work analyzed ten native isolates of Metarhizium spp., with the aim of: 1) verify the tolerance to the UV-B of the isolates, being in aqueous suspensions or oil-in-water emulsions; 2) to verify the tolerance to UV-B of the different propagules of these isolates; 3) to verify the viability of conidia in the soil after UV-B radiation; 4) to evaluate the mortality of R. microplus larvae after exposure of fungi to UV-B. The propagules (conidia, blastospores and microsclerotia) were exposed to UV-B radiation with a total dose of 4.0 kJ m-2 . Conidia suspended in water or oil-water emulsions were evaluated for germination 24 h and 48 h after exposure to UV-B. Conidia adsorbed on different soil types were evaluated for the presence of colony forming units (CFU) after seven days. Blastospores and microsclerotia were evaluated for the presence of CFUs (colony forming units) 72 h and 6 days after exposure to UV-B, respectively. We did not observe a pattern in the tolerance of the different propagules of Metarhizium spp., as the oil did not always protect the conidia of the irradiation. Our results suggest that the different types of soil tested provided UV-B protection to the isolates of Metarhizium spp., except for LCMS05, when adsorbed on soil type I. As for blastospores, LCMS05 was the only isolate that obtained moderate tolerance to irradiation (63.2% germination). Three isolates (LCMS05, LCMS08 and LCMS10) were more tolerant to UV-B when presented in the form of microsclerotia, with a CFC rate above 85%, but only the LCMS10 isolate was statistically equal to the non-exposed control, reaching the same number of CFUs. In the bioassay to verify the mortality of R. microplus larvae after exposure of the fungi to UV-B irradiation, the tested isolates (LCMS03 and LCMS08), although not showing statistical differences each other, obtained good results and showed potential to control R. microplus larvae. The data on UV-B tolerance of the same fungal isolate observed for different propagules, or the same fungal propagule exposed to UV-B in different circumstances, reveal important information not only on the relevance of the intrinsic tolerance of each isolate, but also different propagules of the same fungus. As far as we know, this is the first work analyzing the tolerance to UV-B of different propagules of the same fungal isolate. This study aims to support future research on the discovery of promising fungal isolates and propagules for biological control.
publishDate 2019
dc.date.issued.fl_str_mv 2019-02-19
dc.date.accessioned.fl_str_mv 2021-12-03T12:59:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CORVAL, Amanda Rocha da Costa. Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus. 2019. 42 f. Disserta??o (Mestrado em Ci?ncias Veterin?rias) - Instituto de Veterin?ria, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/5281
identifier_str_mv CORVAL, Amanda Rocha da Costa. Caracteriza??o da toler?ncia de diferentes prop?gulos de Metarhizium spp. ? radia??o UV-B e avalia??o da virul?ncia de con?dios expostos contra larvas de Rhipicephalus microplus. 2019. 42 f. Disserta??o (Mestrado em Ci?ncias Veterin?rias) - Instituto de Veterin?ria, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2019.
url https://tede.ufrrj.br/jspui/handle/jspui/5281
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv AHMED, S.I.; LEATHER, S.R. Suitability and potential of entomopathogenic microorganisms for forest pest management?some points for consideration. International Journal of Pest Management, v. 40, n. 4, p. 287-292, 1994. ALKHAIBARI, A.M.; CAROLINO, A.T.; YAVASOGLU, S.I.; MAFFEIS, T.; MATTOSO, T.C.; BULL, J.C.; SAMUELS, R.I.; BUTT, T.M. Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae :attack on several fronts accelerates mortality. PLoS Pathogens, v. 12, n. 7, 2016. ALKHAIBARI, A.M.; CAROLINO, A.T.; BULL, J.C.; SAMUELS, R.I.; BUTT, T.M. Differential pathogenicity of Metarhizium blastospores and conidia against larvae of three mosquito species. Journal of Medical Entomology, v. 54, n. 3, 2017. ALVES, S. B. Controle microbiano de insetos. Piracicaba, SP: FEALQ, 1998, 1163p. ALVES, R.T.; BATEMAN, R.P.; PRIOR, C.; LEATHER, S.R. Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulations. Crop Protection, v. 17, p. 675-679, 1998. ANGELO, I.C.; FERNANDES, E.K.K.; BAHIENSE, T.C.; PERINOTTO, W.M.S.; MORAES, A.P.R.; TERRA, A.L.M.; BITTENCOURT, V.R.E.P. Efficiency of Lecanicillium lecanii to control the tick Rhipicephalus microplus. Veterinary Parasitology, v. 172, p. 317- 322, 2010. AW, K.M.S.; HUE, S.M. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. Journal of Fungi, v. 3, n. 30, 2017. BAHIENSE, T.C.; FERNANDES, E.K.K.; ANGELO, I.C.; PERINOTTO, W.M.S.; BITTENCOURT, V.R.E.P. Avalia??o do potencial de controle biol?gico do Metarhizium anisopliae sobre Boophilus microplus em teste de est?bulo. Revista Brasileira de Parasitologia Veterin?ria, v. 16, n. 4, p. 243-245, 2007. 31 BEHLE, R.W.; JACKSON, M.A.; FLOR-WEILER, L.B. Efficacy of a Granular Formulation Containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) Microsclerotia Against Nymphs of Ixodes scapularis (Acari: Ixoididae). Biological and Microbial Control, v. 106, n.1, p.57-63, 2013. BERNARDO, C.C, BARRETO L.P, e SILVA, C.d S.R., LUZ, C, ARRUDA, W, FERNANDES, E.K.K., Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus, Ticks and Tick-borne Diseases (2018), https://doi.org/10.1016/j.ttbdis.2018.06.001. BEYS DA SILVA, W.O.; SANTI, L.; SCHRANK, A.; VAINSTEIN, M.H. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. British Mycological Society, v. 114, p. 10-15, 2010. BIEGELMEYER, P.; NIZOLI, L.Q.; CARDOSO, F.F.; DIONELLO, N.J.L. Aspectos da resist?ncia de bovinos ao carrapato Rhipicephalus (Boophilus) microplus. Archivos de zootecnia. V. 61, p. 1-11, 2012. BISCHOFF, J.F.; REHNER, S.A.; HUMBER, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, v. 101, n. 4, p. 512-530, 2009. BITTENCOURT, V.R.E.P.; MASSARD, C.L.; LIMA, A.F. Uso do fungo Metarhizium anisopliae (Metschnikoff, 1879) Sorokin, 1883, no controle do carrapato Boophilus microplus (Canestrini, 1887). Arquivo da Universidade Rural do Rio de Janeiro, v. 15, p. 197-202, 1992. BITTENCOURT, V.R.E.P.; MASSARD, C.L.; LIMA, A.F. A??o do fungo Metarhizium anisopliae sobre a fase n?o parasit?ria do ciclo biol?gico de Boophilus microplus. Rev. Univ. Rural, S?r. Ci?nc. da Vida, v. 16, p. 49-55, 1994. BRAGA, G.U.L.; FLINT, S.D.; MESSIAS, C.L.; ANDERSON, A.J.; ROBERTS, D.W. Effect of UV-B on conidia and germlings of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycology Research, v. 105, n. 7, p. 874 ? 882, 2001a. 32 BRAGA, G.U.L.; FLINT, S.D.; MILLER, C.D.; ANDERSON, A.J.; ROBERTS, D.W. Both Solar UVA and UVB Radiation Impair Conidial Culturability and Delay Germination in the entomopathogenic Fungus Metarhizium anisopliae. Photochemistry and Photobiology, v. 74, n. 5, p. 734-739, 2001b. BRAGA, G.U.L.; RANGEL, D.E.N.; FERNANDES, E.K.K.; FLINT, S.D.; ROBERTS, D.W. Molecular and physiological effects of environmental UV radiation on fungal conidia. Current Genetics, v.61, n. 3, p. 405-425, 2015. BRUCK, D.J. Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: implications for pest management. Biological Control, v. 32, p. 155-163, 2004. CAMARGO, M.G.; G?LO, P.S.; ANGELO, I.C.; PERINOTTO, W.M.S.; S?, F.A.; QUINELATO, S.; BITTENCOURT, V.R.E.P. Effect of oil-based formulations of acaripatogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Veterinary Parasitology, v. 188, p. 140 ? 147, 2012. CAMARGO, M.G.; MARCIANO, A.F.; S?, F.A.; PERINOTTO, W.M.S.; QUINELATO, S.; GOLO, P.S.; ANGELO, I.C.; PRATA, M.C.A.; BITTENCOURT, V.R.E.P. Commercial formulation of Metarhizium anisopliae for the control of Rhipicephalus microplus in a pen study. Veterinary Parasitology, v. 205, p. 271-276, 2014. CAMARGO, M.G.; NOGUEIRA, M.R.S.; MARCIANO, A.F.; PERINOTTO, W.M.S.; COUTINHO-RODRIGUES, C.J.B.; SCOTT, F.B.; ANGELO, I.C.; PRATA, M.C.A.; BITTENCOURT, V.R.E.P. Metarhizium anisopliae for controlling Rhipicephalus microplus ticks under field conditions. Veterinary Parasitology, v. 223, p. 38-42, 2016. COHEN, E.; JOSEPH, T.; KAHANA, F.; MAGDASSI, S. Photostabilization of an entomopathogenic fungus using composite clay matrices. Photochemistry and Photobiology, v. 77, p. 180-185, 2003. 33 COLEY-SMITH, J.R.; COOKE, R.C. Survival and germination of fungal sclerotia. In: Horsfall JG, Baker KF, Zentmyer GA (eds), Annual Review of Phytopathology. Annual Reviews Inc., Palo Alto, CA, USA, p. 65-92, 1971. FARGUES, J.; ROUGIER, M.; GOUJET, R.; SMITS, N.; COUSTERE, C.; ITIER, B. Inactivation of Conidia of Paecilomyces fumosoroseus by Near-Ultraviolet (UVB and UVA) and Visible Radiation. Journal of Invertebrate Pathology, v. 69, p. 70-78, 1997. FERNANDES, E.K.K.; COSTA, G.L.; SOUZA, E.J.; MORAES, A.M.; BITTENCOURT, V.R.E.P. Beauveria bassiana isolated from engorged females and tested against eggs and larvae of Boophilus microplus (Acari: Ixodidae). J Basic Microbiol, v. 43, n.5, 2003. FERNANDES, E.K.K.; KEYSER, C.A.; CHONG, J.P.; RANGEL, D.E.N.; MILLER, M.P.; ROBERTS, D.W. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. Journal of Applied Microbiology, v. 108, p. 115 ? 128, 2010. FERNANDES, E.K.K.; ANGELO, I.C.; RANGEL, D.E.N.; BAHIENSE, T.C.; MORAES, A.M.L.; ROBERTS, D.W.; BITTENCOURT, V.R.E.P. An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Veterinary Parasitology, v. 182, p. 307-318, 2011. FERNANDES, E.K.K.; BITTENCOURT, V.R.E.P.; ROBERTS, D.W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Experimental Parasitology, v. 130, p. 300-305, 2012. FERNANDES, E.K.K.; RANGEL, D.E.N.; BRAGA, G.U.L.; ROBERTS, D.W. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Current Genetics, 2015. FERREIRA, L. L.; SOARES, S. F.; FILHO, J. G. O.; OLIVEIRA, T. T.; L?ON, A. A. P.; BORGES, L. M. F. Role of Rhipicephalus microplus cheliceral receptors in gustation and host differentiation. Ticks and Tick-borne Diseases. v. 6, p. 228-233, 2015. 34 FRASER, D.P.; SHARMA, A.; FLETCHER, T.; BUDGE, S.; MONCRIEFF, C.; DODD, A.N.; FRANKLIN, K.A. UV-B antagonises shade avoidance and increases levels of the flavonoid quercetin in coriander (Coriandrum sativum). Scientific Reports, v.7, n.17758, 2017. FURLONG, J.; PRATA, M.C.A. Conhecimento b?sico para controle do carrapato-dosbovinos. In: FURLONG, J. (Org.). Carrapatos: problemas e solu??es. Juiz de Fora: Embrapa Gado de Leite. p. 9-20, 2005. GARCIA, M.V.; MONTEIRO, A.C.; SZAB?, M.P.J.; MOCHI, D.A.; SIMI, L.D.; CARVALHO, W.M.; TSURUTA, S.A.; BARBOSA, J.C. Effect of Metarhizium anisopliae fungus on off-host Rhipicephalus (Boophilus) microplus from tick-infested pasture under cattle grazing in Brazil. Veterinary Parasitology, v. 181, p. 267-273, 2011. GESSLER, N.N.; EGOROVA, A.S.; BELOZERSKAYA, T.A. Melanin Pigments of Fungi under Extreme Environmental Conditions (Review). Apllied Biochemistry and Microbiology, v.50, n.2, p.105-113, 2014. GHANIZADEH-KAZEROUNI, E.; FRANKLIN, C.E.; SEEBACHER, F. Living in flowing water increases resistance to ultraviolet B radiation. The Company of Biologists. V. 220, p. 582-587, 2017. GOBLE, T.A.; GARDESCU, S.; FISHER, J.J.; JACKSON, M.A.; HAJEK, A.E. Conidial production, persistence and pathogenicity of hydromulch formulations of Metarhizium brunneum F52 microsclerotia under forest conditions. Biological Control, 2016, doi: http://dx.doi.org/10.1016/j.biocontrol.2016.01.003. GRISI, L.; LEITE, R.C.; MARTINS, J.R.S.; BARROS, A.T.M.; ANDREOTTI, R.; CAN?ADO, P.H.D.; LE?N, A.A.P.; PEREIRA, J.B.; VILLELA, H.S. Reassessment of the potencial economic impact of cattle parasites in Brazil. Braz. J. Vet. Parasitol., Jaboticabal v.23, n.2, p.150-156, 2014. 35 HALLSWORTH, J.E.; MAGAN, N. Culture Age, Temperature, and pH Affect the Polyol and Trehalose Contents of Fungal Propagules. Applied Environmental Microbiology, v. 62, p. 2435-2442, 1996. HUMBER, R.A. Fungi: Identification. In: Manual Of Techniques In Insect Pathology, Academic Press, p. 153 ? 185, 1997. IGNOFFO, C.M.; HOSTETTER, D.L.; SIKOROWSKI, P.P.; SUTTER, G.; BROOKS, W.M. Inactivation of Representative Species of Entomopathogenic Viruses, a Bacterium, Fungus, and Protozoan by an Ultraviolet Light Source. Environmental Entomology, v. 6, n. 3, p. 411-415, 1977. JACKSON, M.A.; JARONSKI, S.T. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. British Mycological Society, v.113, p. 842-850, 2009. JACKSON, M.A.; JARONSKI, S.T. Development of pilot-scale fermentation and stabilization processes for the production of microsclerotia of the entomopathogenic fungus Metarhizium brunneum strain F52. Biocontrol Science and Technology, v. 22, n. 8, p. 915- 930, 2012. JACKSON, M.A.; PAYNE, A.R. Liquid Culture Production of Fungal Microsclerotia. In: GLARE, T.T. and MORAN-DIEZ, M. E. (eds.) Microbial-Based Biopesticides: Methods and Protocols, Methods in Molecular Biology, New York, v. 1477, p. 71-83, 2016. JARONSKI, S.T. Soil Ecology of the Entomopathogenic Ascomycetes: A Critical Examination of What We (Think) We Know. In: EKESI, S. and MANIANIA, N.K., editors. Use of Entomopathogenic Fungi in Biological Pest management: Research Signpost, p. 91-144, 2007. JENKINS, G.I. Signal Transduction in responses to UV-B radiation. Annual Review of Plant Biology, v. 60, p. 407-431, 2009. 36 JENKINS, G.I. Photomorphogenic responses to ultraviolet-B light. Plant, Cell & Environment, doi: 10.1111/pce.12934, 2017 [Epub ahead of print] KIM, J.S.; JE, Y.H.; SKINNER, M.; PARKER, B.L. An oil-based formulation of Isaria fumosorosea blastospores for management of greenhouse whitefly Trialeurodes vaporariorum (Homoptera:Aleyrodidae). Pest Manag Sci, v. 69, p. 576-581, 2013. LANZA, L.M.; MONTEIRO, A.C.; MALHEIROS, E.B. Popula??o de Metarhizium anisopliae em diferentes tipos e graus de compacta??o do solo. Ci?ncia Rural, v. 34, n. 6, p. 1757-1762, 2004. LECLERC, J-B, PINTO SILVA, J, DETRAIN, C. Impact of soil contamination on the growth and shape of ant nests. Royal Society open science, 5, 2018. LEEMON, D.M.; JONSSON, N.N. Laboratory studies on Australian isolates of Metarhizium anisopliae as a biopesticide for the cattle tick Boophilus microplus. Journal of Invertebrate Pathology, n. 97, p. 40-49, 2008. LEEMOM, D.M.; TURNER, L.B.; JONSSON, N.N. Pen studies on the control of cattle tick (Rhipicephalus (Boophilus) microplus) with Metarhizium anisopliae (Sorokin). Veterinary Parasitology, v. 156, p. 248-260, 2008. LONC, E.; GUZ-REGNER, K.; KIEWRA, D.; SZCZEPANSKA, A. Insight into tick biocontrol with special regard to fungi. Annals of Parasitology, v. 60, n. 3, p. 169-177, 2014. LOPES, R.B.; SOUZA, D.A.; ROCHA, L.F.N.; MONTALVA, C. LUZ, C.; HUMBER, R.A.; FARIA, M. The entomopathogenic genus Metarhizium has been defined morphologically by the presence of densely packed hymenia of candelabrum-like, broadly branched conidiophores with cylindrical to clavate phialides producing green conidia in prismatic columns to dense plates. Journal of Invertebrate Pathology, v.151, p. 165-168, 2018. LUZ, C.; D?ALESSANDRO, W.B.; RODRIGUES, J.; FERNANDES, E.K.K. Efficacy of water- and oil-in-water-formulated Metarhizium anisopliae in Rhipicephalus sanguineus eggs and eclosing larvae. Parasitology Research, 2015 37 MASCARIN, G.M.; KOBORI, N.N.; VITAL, R.C.J.; JACKSON, M.A.; QUINTELA, E.D. Production of microsclerotia by brazilian strains of Metarhizium spp. using submerged liquid culture fermentation. World Journal Microbiology Biotechnology, 2013. MASCARIN, G.M.; BIAGGIONI LOPES, R.; DELALIBERA, I. JR.; KORT KAMP FERNANDES, E.; LUZ, C.; FARIA, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology, 2018. MILLER, M.E.; SHISHKOFF, N.; CUBETA, M.A. Thermal sensitivity of Calonectria henricotiae and Calonectria pseudonaviculata conidia and microsclerotia. Mycology, v. 110, n. 3, p. 546-558, 2018. MOCHI, D.A.; MONTEIRO, A.C., DE BORTOLI, S.A.; D?RIA, H.O.S.; BARBOSA, J.C. Pathogenicity of Metarhizium anisopliae for Ceratitis capitata (Wied.) (Diptera: Tephritidae) in Soil with Different Pesticides. Neotropical entomology, v. 35, n. 3, p. 382-389, 2006. MOORE, D.; BRIDGE, P.D.; HIGGINS, P.M.; BATEMAN, R.P.; PRIOR, C. Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Annual Applied Biology, v. 122, p. 605-616, 1993. MOSSA, A.T.W.; AFIA, S.I.; MOHAFRASH, S.M.M.; ABOU-AWAD, B.A. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae). Environmental Science and Pollution Research, v.25, p. 10526-10537, 2017. NASCIMENTO, E.; SILVA, S.H.; MARQUES, E.R.; ROBERTS, D.W.; BRAGA, G.U.L. Quantification of Cyclobutane Pyrimidine Dimers Induced by UVB Radiation in Conidia of the Fungi Aspergillus fumigatus, Aspergillus nidulans, Metarhizium acridum and Metarhizium robertsii. Photochemistry and Photobiology, v. 86, p. 1259-1266, 2010. 38 OJEDA-CHI, M.M.; RODRIGUEZ-VIVAS, R.I.; GALINDO-VELASCO, E.; LEZAMAGUTI?RREZ, R. Laboratory and Field evaluation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) for the control of Rhipicephalus microplus (Acari: Ixodidae) in the Mexican tropics. Veterinary Parasitology, v. 170, p. 348-354, 2010. PAIX?O, F.R.S.; MUNIZ, E.R.; BARRETO, L.P.; BERNARDO, C.C.; MASCARIN, G.M.; LUZ, C.; FERNANDES, E.K.K. Increased heat tolerance afforded by oil-based conidial formulations of Metarhizium anisopliae and M. robertsii. Biocontrol Science and Technology, DOI: 10.1080/09583157.2017.1281380, 2017. PAUL, N.D.; GWYNN-JONES, D. Ecological roles of solar UV radiation: towards an integrated approach. TRENDS in Ecology and Evolution, v. 18, n. 1, p. 48-55, 2003. PEREIRA-JUNIOR, R.R.; HUARTE-BENNET, C.; PAIX?O, F.R.S.; ROBERTS, D.W.; LUZ, C.; PEDRINI, N.; FERNANDES, ?.K.K. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes. Journal of Applied Microbiology, v. 125, p. 159-171, 2018. PERINOTTO, W.M.S.; ANGELO, I.C.; GOLO, P.S.; QUINELATO, S.; CAMARGO, M.G.; S?, F.A.; BITTENCOURT, V.R.E.P. Susceptibility of different populations of ticks to entomopathogenic fungi. Experimental Parasitology. v.130, p. 257-260, 2011. POLAR, P.; KAIRO, M.T.K.; MOORE, D.; PEGRAM, R.; JOHN, S-A. Comparison of water, oils and emulsifiable adjuvant oils as formulating agents for Metarhizium anisopliae for use in control of Boophilus microplus. Mycopathologia, v. 160, p. 151 ? 157, 2005. QUAITE, F.E., SUTHERLAND, B.M.; SUTHERLAND, J.C. Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature, v. 358, p. 576?578, 1992. QUINELATO, S.; GOLO, P.S.; PERINOTTO, W.M.S.; S?, F.A.; CAMARGO, M.G.; ANGELO, I.C.; MORAES, A.M.L.; BITTENCOURT, V.R.E.P. Virulence potential of Metarhizium anisopliae s.l. isolates on Rhipicephalus (Boophilus) microplus larvae. Veterinary Parasitology, v. 190, p. 556-565, 2012. 39 RANGEL, D.E.N.; BRAGA, G.U.L.; FLINT, S.D.; ANDERSON, A.J.; ROBERTS, D.W. Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates. Journal of Invertebrate Pathology,v. 87, p. 77- 83, 2004. RANGEL, D.E.N.; BRAGA, G.U.L.; ANDERSON, A.J.; ROBERTS, D.W. ) Influence of growth environment on tolerance to UV-B radiation, germination speed, and morphology of Metarhizium anisopliae var. acridum conidia. Journal of Invertebrate Pathology, v. 90, p. 55-58, 2005. RANGEL, D.E.N.; ANDERSON, A.; BRAGA, G.U.L.; ROBERTS, D.W. Mutants and isolates of Metarhizium anisopliae are diverse in their relationship between conidial pigmentation and stress... Journal of Invertebrate Pathology, v. 93, p. 170-182, 2006. RANGEL, D.E.N.; ANDERSON, A,J.; ROBERTS, D.W. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycological Research, v. 112, p. 1362-1372, 2008. RANGEL, D.E.N.; FERNANDES, E.K.K.; BRAGA, G.U.L.; ROBERTS, D.W. Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiology Letters, v.315, p. 81-86, 2011. ROBERTS, D.W.; ST.LEGER, R. Metarhizium spp., Cosmopolitan Insect-Pathogenic Fungi: Mycological Aspects. Advances in applied microbiology, v. 54, 2004. RODR?GUEZ, P. B. R.; CRUZ, R. R.; GARC?A, D. I. D.; GUTI?RREZ, R. H.; QUINTANILLA, R. E. L.; SAHAGUN, D. O.; CASTILLO, C. G.; ORTEGA, A. G.; RODR?GUEZ, S. E. H.; CARDONA, A. V.; VEL?ZQUEZ, M. M. Identification of immunogenic proteins from ovarian tissue and recognized in larval extracts of Rhipicephalus (Boophilus) microplus, through na immunoproteomic approach. Experimental Parasitology, v. 170, p. 227-235, 2016. 40 SAMISH, M.; REHACEK, J. Pathogens and predators of ticks and their potential in biological control. Annual Reviews Entomology, v. 44, p.159-182, 1999. SAMISH, M.; ROT, A.; MENT, D.; BAREL, S.; GLAZER, I.; GINDIN, G. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions. Veterinary Parasitology, v. 206, p. 258-266, 2014. SASAN, R.K. BIDOCHKA, M.J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, v. 99, n.1, p. 101 ? 107, 2012. SCHRANK, A.; VAINSTEIN, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon, v. 56, p. 1267-1274, 2010. SHANG, Y.; DUAN, Z.; HUANG, W.; GAO, Q.; WANG, C. Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with na exogenous tyrosinase gene. Journal of Invertebrate Pathology?, V.109, p.105-109, 2012. SONG, Z.; ZHONG Q.; YIN, Y.; SHEN, L.; LI, Y.; WANG, Z. The high osmotic response and cell wall integrity pathways cooperate to regulate morphology, microsclerotia development, and virulence in Metarhizium rileyi. Scientific Reports, 2016. ST. LEGER, R.J. Studies on adaptations of Metarhizium anisopliae to life in the soil. Journal of Invertebrate Pathology, v. 98, p. 271-276, 2008. SUTHAPARAN, A.; PATHAK. R.; SOLHAUG, K.A.; GISLEROD, H.R. Wavelength dependent recovery of UV-mediated damage: tying up the loose ends of optical based powdery mildew management. Journal of Photochemistry & Photobiology, doi: 10.1016/j.jphotobiol.2017.12.018 [Epud ahead of print]. TIAGO, P.V.; OLIVEIRA, N.T.; LIMA, E.A.L.A. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects. Ci?ncia Rural, v. 44, n. 4, p. 645-651, 2014. 41 TIRLONE, L.; KIM, T.K.; COUTINHO, M.L.; ALI, A.; SEIXAS, A.; TERMIGNONI, C.; MULENGA, A.; VAZ JR, I.S. The putative role of Rhipicephalus microplus salivary serpins in the tick-host relationship. Insect Biochemistry and Molecular Biology, v. 71, p. 12-28, 2016. TUPE, S.G.; PATHAN, E.K; DESHPANDE, M.V. Development of Metarhizium anisopliae as a Mycoinsecticide: From Isolation to Field Performance. Journal of Visualized Experiments (125), e55272, 2017. WANG, H.; LEI, Z.; REITZ, S.; LI, Y.; XU, X. Production of microsclerotia of the fungal entomopathogen Lecanicillium lecanii (Hypocreales: Cordycipitaceae) as a biological control agent against soil-dwelling stages of Frankliniella occidentalis (Thysanoptera: Thripidae). Biocontrol Science and Technology, v. 23, n. 2, p. 234 ? 238, 2013. WEBSTER, A.; RECK, J.; SANTI, L.; SOUZA, U.A.; DALL?AGNOL, B.; KLAFKE, G.M.; BEYS-DA-SILVA, W.O.; MARTINS, J.R.; SCHRANK, A. Integrated control of an acaricide-resistant strain of the cattle tick Rhipicephalus microplus by applying Metarhizium anisopliae associated with cypermethrin and chlorpyriphos under field conditions. Veterinary Parasitology, v. 207, p. 302-308, 2015. WILLIAMSON, C.E.; ZEPP, R.G.; LUCAS, R.M.; MADRONICH, S.; AUSTIN, A.T.; BALLAR?, C.L.; NORVAL, M.; SULZBERGER, B.; BAIS, A.F.; MCKENZIE, R.L.; ROBINSON, S.A.; H?DER, D-P.; PAUL, N.D.; BORNMAN, J.F. Solar ultraviolet radiation in a changing climate. Nature Climate Change, v. 4, p. 434-441, 2014. YU, X.; HUO, L.; LIU, H.; CHEN, L.; WANG, Y.; ZHU, X. Melanin is required for the formation of the multi-cellular conidia in the endophytic fungus Pestalotiopsis microspora. Microbiological Research. V.179, p.1-11, 2015. ZIMMERMANN, G. Effect of High Temperatures and Artificial Sunlight on the Viability of Conidia of Metarhizium anisopliae. Journal of Invertebrate Pathology, v. 40, p. 36-40, 1982. 42 ZIMMERMAN, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, v. 17, n. 9, p. 879-920, 2007. ZHOU, B-B.S.; ELLEDGE, S.J. The DNA damage response: putting checkpoints in perspective. Nature, v. 408, p. 433-439, 2000. ZHOU, R.; ZHOU, X.; FAN, A.; WANG, Z.; HUANG, B. Differential functions of two metalloproteses, Mrmep1 and Mrmep2, in growth, sporulation, cell wall integrity, and virulence in the filamentous fungi Metarhizium robertsii. Frontiers in microbiology, v. 9, n. 1528, 2018.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Ci?ncias Veterin?rias
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Veterin?ria
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/5281/4/2019+-++Amanda+Rocha+da+Costa+Corval.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/5281/3/2019+-++Amanda+Rocha+da+Costa+Corval.pdf.txt
http://localhost:8080/tede/bitstream/jspui/5281/2/2019+-++Amanda+Rocha+da+Costa+Corval.pdf
http://localhost:8080/tede/bitstream/jspui/5281/1/license.txt
bitstream.checksum.fl_str_mv 25015b4f0d7a4e22cdde8bd033601ff5
b9ff54680b21a268903bd8c151e13a14
e125f8a731dc244d83b5bb27fc66aea4
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220354540699648