Efeito do manganês sobre a estrutura cristalina da hidroxiapatita

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Oliveira Júnior, Paulo Henrique
Orientador(a): Santos, Euler Araujo dos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Pós-Graduação em Ciência e Engenharia de Materiais
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/jspui/handle/riufs/15077
Resumo: Manganese (Mn) can develop magnetic properties in substituted hydroxyapatites (HA), as well as iron, copper, cobalt and samarium, but with the advantage of controlling several cellular activities. The occupation of the HA sites by Mn and its segregation from HA structure during heat treatments can affect magnetic properties. For this reason, the objective of this work was to study the accommodation of Mn into a carbonated HA, and its segregation mechanism at temperatures above 800°C yielding Mn3O4 nanoparticles. HAs with five different concentrations of Mn in relation to calcium were synthesized by the aqueous precipitation method: (Mn/(Mn+Ca) = 0, 5, 10, 15 and 20 at. %. Using wavelength dispersion X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, it was possible to demonstrate that Mn was inserted into the HA structure in all concentrations, strongly compromising its crystalline structure. The regions around the hydroxyl channels were affected the most, with clear evidence of preferential Ca2 sites occupation, especially in the samples with a high content of CO3 2- replacing PO4 3- . When carbonate was released at high temperature and the crystallinity increased, the Ca1 sites seemed more susceptible to occupation by Mn. At temperatures above 1000°C, Mn segregated from the HA structure in the form of Mn3O4 nanoparticles, via hydroxyl channels, preferentially occupying Ca2 sites at the final segregation stage. The presence of Mn in several oxidation states also suggested that, in addition to the cationic substitutions, there were also anionic substitutions such as MnO4 3- at the PO4 3- sites. No cytotoxicity was detected for the lower concentration of Mn regarding osteoblastic cells. These results contributed to clarify the Mn behavior into HA and its segregation, being fundamental to the development of new strategies to synthesize magnetic-active hydroxyapatite-based scaffolds in the future.
id UFS-2_0e3c8911c9505ddc64884137aa917db6
oai_identifier_str oai:ufs.br:riufs/15077
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Oliveira Júnior, Paulo HenriqueSantos, Euler Araujo dosFerreira, Nilson dos Santos2022-02-24T21:50:53Z2022-02-24T21:50:53Z2021-04-28OLIVEIRA JUNIOR, Paulo Henrique. Efeito do manganês sobre a estrutura cristalina da hidroxiapatita. 2021. 105 f. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de Sergipe, São Cristóvão, 2021.https://ri.ufs.br/jspui/handle/riufs/15077Manganese (Mn) can develop magnetic properties in substituted hydroxyapatites (HA), as well as iron, copper, cobalt and samarium, but with the advantage of controlling several cellular activities. The occupation of the HA sites by Mn and its segregation from HA structure during heat treatments can affect magnetic properties. For this reason, the objective of this work was to study the accommodation of Mn into a carbonated HA, and its segregation mechanism at temperatures above 800°C yielding Mn3O4 nanoparticles. HAs with five different concentrations of Mn in relation to calcium were synthesized by the aqueous precipitation method: (Mn/(Mn+Ca) = 0, 5, 10, 15 and 20 at. %. Using wavelength dispersion X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, it was possible to demonstrate that Mn was inserted into the HA structure in all concentrations, strongly compromising its crystalline structure. The regions around the hydroxyl channels were affected the most, with clear evidence of preferential Ca2 sites occupation, especially in the samples with a high content of CO3 2- replacing PO4 3- . When carbonate was released at high temperature and the crystallinity increased, the Ca1 sites seemed more susceptible to occupation by Mn. At temperatures above 1000°C, Mn segregated from the HA structure in the form of Mn3O4 nanoparticles, via hydroxyl channels, preferentially occupying Ca2 sites at the final segregation stage. The presence of Mn in several oxidation states also suggested that, in addition to the cationic substitutions, there were also anionic substitutions such as MnO4 3- at the PO4 3- sites. No cytotoxicity was detected for the lower concentration of Mn regarding osteoblastic cells. These results contributed to clarify the Mn behavior into HA and its segregation, being fundamental to the development of new strategies to synthesize magnetic-active hydroxyapatite-based scaffolds in the future.O manganês (Mn) pode desenvolver propriedades magnéticas em hidroxiapatitas (HA) substituídas, assim como o ferro, cobre, cobalto e samário, mas com a vantagem de também controlar diversas atividades celulares. O tipo e grau de ocupação dos sítios da HA e a possibilidade de segregação de óxidos desses elementos durante tratamentos térmicos definem as propriedades magnéticas resultantes. Por essa razão, o objetivo desse trabalho foi estudar de forma preliminar como ocorre a acomodação do Mn nos sítios de uma HA carbonatada, bem como seu mecanismo de segregação em temperaturas acima de 800°C com a formação de nanopartículas de Mn3O4. Para isso, HAs com cinco diferentes concentrações de Mn em relação ao cálcio foram sintetizadas pelo método de precipitação em meio aquoso: (Mn/(Mn+Ca) = 0, 5, 10, 15 e 20 % at. Usando-se fluorescência de raios X por dispersão de comprimento de onda, difração de raios X, espectroscopia no infravermelho com transformada de Fourier, microscopia eletrônica de transmissão e espectroscopia de fotoelétrons de raios X, ficou demonstrando que o Mn foi inserido na estrutura da HA para todas as concentrações, perturbando consideravelmente a sua estrutura cristalina. As regiões dos canais hexagonais de hidroxila sofreram as maiores perturbações, com evidências de ocupação preferencial dos sítios de Ca2, principalmente para as amostras verdes com alto teor de CO3 2- em substituição ao PO4 3- . Quando o CO3 2- é liberado em alta temperatura e a cristalinidade aumenta, os sítios de Ca1 parecem mais suscetíveis à ocupação por Mn. Em temperaturas acima de 1000°C, o Mn tendeu a ser segregado da estrutura da HA na forma de nanopartículas de Mn3O4, via canais de hidroxila, ocupando preferencialmente sítios de Ca2 no estágio final da segregação. A presença de Mn em diversos estados de oxidação também sugeriu que, além das substituições catiônicas, ocorreram também substituições aniônicas de MnO4 3- nos sítios de PO4 3- . Na sua concentração mais baixa, o Mn não apresentou citotoxicidade frente a osteoblastos humanos. Esses resultados são essenciais na compreensão do comportamento do Mn na HA e sua segregação, sendo fundamental para o desenvolvimento de novas estratégias para a produção de arcabouços magnéticos ativos baseados em hidroxiapatita no futuro.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESSão CristóvãoporCiência dos materiaisHidroxiapatitaÓxidos de manganêsNanopartículas magnéticasHidroxiapatitaÓxido de manganêsNanopartículas magnéticasEstrutura cristalinaHydroxyapatiteManganese oxideMagnetic nanoparticlesCrystalline structureENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICAEfeito do manganês sobre a estrutura cristalina da hidroxiapatitaEffect of manganese on the crystalline structure of hydroxiapatiteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPós-Graduação em Ciência e Engenharia de MateriaisUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/15077/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALPAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdfPAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdfapplication/pdf7392620https://ri.ufs.br/jspui/bitstream/riufs/15077/2/PAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdf1826e981efaaddf0a47a46ebccb55aa7MD52TEXTPAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdf.txtPAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdf.txtExtracted texttext/plain152186https://ri.ufs.br/jspui/bitstream/riufs/15077/3/PAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdf.txtb6629884542110d4a94c221b296fa514MD53THUMBNAILPAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdf.jpgPAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdf.jpgGenerated Thumbnailimage/jpeg1221https://ri.ufs.br/jspui/bitstream/riufs/15077/4/PAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdf.jpge886d0c65ca5ae937941a596e7d1b760MD54riufs/150772022-02-24 18:50:53.377oai:ufs.br:riufs/15077TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2022-02-24T21:50:53Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Efeito do manganês sobre a estrutura cristalina da hidroxiapatita
dc.title.alternative.eng.fl_str_mv Effect of manganese on the crystalline structure of hydroxiapatite
title Efeito do manganês sobre a estrutura cristalina da hidroxiapatita
spellingShingle Efeito do manganês sobre a estrutura cristalina da hidroxiapatita
Oliveira Júnior, Paulo Henrique
Ciência dos materiais
Hidroxiapatita
Óxidos de manganês
Nanopartículas magnéticas
Hidroxiapatita
Óxido de manganês
Nanopartículas magnéticas
Estrutura cristalina
Hydroxyapatite
Manganese oxide
Magnetic nanoparticles
Crystalline structure
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
title_short Efeito do manganês sobre a estrutura cristalina da hidroxiapatita
title_full Efeito do manganês sobre a estrutura cristalina da hidroxiapatita
title_fullStr Efeito do manganês sobre a estrutura cristalina da hidroxiapatita
title_full_unstemmed Efeito do manganês sobre a estrutura cristalina da hidroxiapatita
title_sort Efeito do manganês sobre a estrutura cristalina da hidroxiapatita
author Oliveira Júnior, Paulo Henrique
author_facet Oliveira Júnior, Paulo Henrique
author_role author
dc.contributor.author.fl_str_mv Oliveira Júnior, Paulo Henrique
dc.contributor.advisor1.fl_str_mv Santos, Euler Araujo dos
dc.contributor.advisor-co1.fl_str_mv Ferreira, Nilson dos Santos
contributor_str_mv Santos, Euler Araujo dos
Ferreira, Nilson dos Santos
dc.subject.por.fl_str_mv Ciência dos materiais
Hidroxiapatita
Óxidos de manganês
Nanopartículas magnéticas
Hidroxiapatita
Óxido de manganês
Nanopartículas magnéticas
Estrutura cristalina
topic Ciência dos materiais
Hidroxiapatita
Óxidos de manganês
Nanopartículas magnéticas
Hidroxiapatita
Óxido de manganês
Nanopartículas magnéticas
Estrutura cristalina
Hydroxyapatite
Manganese oxide
Magnetic nanoparticles
Crystalline structure
ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
dc.subject.eng.fl_str_mv Hydroxyapatite
Manganese oxide
Magnetic nanoparticles
Crystalline structure
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
description Manganese (Mn) can develop magnetic properties in substituted hydroxyapatites (HA), as well as iron, copper, cobalt and samarium, but with the advantage of controlling several cellular activities. The occupation of the HA sites by Mn and its segregation from HA structure during heat treatments can affect magnetic properties. For this reason, the objective of this work was to study the accommodation of Mn into a carbonated HA, and its segregation mechanism at temperatures above 800°C yielding Mn3O4 nanoparticles. HAs with five different concentrations of Mn in relation to calcium were synthesized by the aqueous precipitation method: (Mn/(Mn+Ca) = 0, 5, 10, 15 and 20 at. %. Using wavelength dispersion X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, it was possible to demonstrate that Mn was inserted into the HA structure in all concentrations, strongly compromising its crystalline structure. The regions around the hydroxyl channels were affected the most, with clear evidence of preferential Ca2 sites occupation, especially in the samples with a high content of CO3 2- replacing PO4 3- . When carbonate was released at high temperature and the crystallinity increased, the Ca1 sites seemed more susceptible to occupation by Mn. At temperatures above 1000°C, Mn segregated from the HA structure in the form of Mn3O4 nanoparticles, via hydroxyl channels, preferentially occupying Ca2 sites at the final segregation stage. The presence of Mn in several oxidation states also suggested that, in addition to the cationic substitutions, there were also anionic substitutions such as MnO4 3- at the PO4 3- sites. No cytotoxicity was detected for the lower concentration of Mn regarding osteoblastic cells. These results contributed to clarify the Mn behavior into HA and its segregation, being fundamental to the development of new strategies to synthesize magnetic-active hydroxyapatite-based scaffolds in the future.
publishDate 2021
dc.date.issued.fl_str_mv 2021-04-28
dc.date.accessioned.fl_str_mv 2022-02-24T21:50:53Z
dc.date.available.fl_str_mv 2022-02-24T21:50:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA JUNIOR, Paulo Henrique. Efeito do manganês sobre a estrutura cristalina da hidroxiapatita. 2021. 105 f. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de Sergipe, São Cristóvão, 2021.
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/15077
identifier_str_mv OLIVEIRA JUNIOR, Paulo Henrique. Efeito do manganês sobre a estrutura cristalina da hidroxiapatita. 2021. 105 f. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de Sergipe, São Cristóvão, 2021.
url https://ri.ufs.br/jspui/handle/riufs/15077
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Ciência e Engenharia de Materiais
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/15077/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/15077/2/PAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdf
https://ri.ufs.br/jspui/bitstream/riufs/15077/3/PAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/15077/4/PAULO_HENRIQUE_OLIVEIRA_JUNIOR.pdf.jpg
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
1826e981efaaddf0a47a46ebccb55aa7
b6629884542110d4a94c221b296fa514
e886d0c65ca5ae937941a596e7d1b760
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1793351065310068736