Simulação clássica para análise de terras-raras em cristais e em vidro

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Otsuka, André Massao
Orientador(a): Santos, Marcos Antonio Couto dos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Pós-Graduação em Física
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/jspui/handle/riufs/17825
Resumo: In this thesis, we present two works developed by classical computational modeling techniques. In the first part, we simulate perovskite-type orthorhombic crystals RN iO3, where R = P r, N d, Sm, Eu, Gd, Dy, Y, Ho, Er, Tm, Y b, and Lu, in search of understand the structural and mechanical response of this family of nickelates under external (hydrostatic) and internal (chemical) pressure. We fitted the interatomic potential satisfactorily and verified the transferability of this potential by simulating precursor oxides. The calculations revealed that the behavior of the lattice parameters and the unit cell volume with increasing hydrostatic pressure is in agreement with the data found in the related literature. The same could be verified for the evolution of anisotropy as a function of chemical pressure. The influence of both pressures on bond lengths (R-O, Ni-O) and bond angles (Ni-O1-Ni, Ni-O2-Ni) were also investigated. An anomalous behavior was visualized in the average bond angle (<Ni-O-Ni>) with the hydrostatic pressure, which was related to the low sensitivity of the variation of the metal-insulating transition temperature (TMI ) for compounds with small R ions. Regarding the mechanical response, elastic constants, bulk and shear moduli were studied. The analysis of these quantities under internal and external pressure suggested the possibility of a structural phase transition. In the second part, we simulate using static computational modeling four phases of Al2O3 (R-3c, Pbcn, Pna21 and C2/m) and three phases of Al2SiO5 (silimanite, andalusite and kyanite) in order to adjust the potential for simulation satisfactory results of the aluminosilicate glass Al2O3 − SiO2. Initially, we defined the most appropriate charge for aluminum equal to 1.62e and, with that, we simulated the lattice parameters, unit cell volume, elastic constants and bulk modulus satisfactorily in the seven structures using static simulation and molecular dynamics. Now only using molecular dynamics, we compute the radial and cumulative distribution functions (gij (r) and nij (r)) to discuss bond lengths and coordination number in the structures of Al2SiO5. After validating the fitted potential in the crystal systems, we simulated the glass with 67% of Al2O3 and reproduced in good agreement the spectra of the normalized structural factor (S(Q)) and the correlation function (D(R)). Finally, we simulate four glasses with different percentages of Al2O3 and discuss the glass transition temperature Tg.
id UFS-2_42034c7b0238a25fd4be0531f6ca9be6
oai_identifier_str oai:ufs.br:riufs/17825
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Otsuka, André MassaoSantos, Marcos Antonio Couto dos2023-07-10T20:32:51Z2023-07-10T20:32:51Z2023-06-05OTSUKA, André Massao. Simulação clássica para análise de terras-raras em cristais e em vidro. 2023. 85 f. Tese (Doutorado em Física) – Universidade Federal de Sergipe, São Cristóvão, 2023.https://ri.ufs.br/jspui/handle/riufs/17825In this thesis, we present two works developed by classical computational modeling techniques. In the first part, we simulate perovskite-type orthorhombic crystals RN iO3, where R = P r, N d, Sm, Eu, Gd, Dy, Y, Ho, Er, Tm, Y b, and Lu, in search of understand the structural and mechanical response of this family of nickelates under external (hydrostatic) and internal (chemical) pressure. We fitted the interatomic potential satisfactorily and verified the transferability of this potential by simulating precursor oxides. The calculations revealed that the behavior of the lattice parameters and the unit cell volume with increasing hydrostatic pressure is in agreement with the data found in the related literature. The same could be verified for the evolution of anisotropy as a function of chemical pressure. The influence of both pressures on bond lengths (R-O, Ni-O) and bond angles (Ni-O1-Ni, Ni-O2-Ni) were also investigated. An anomalous behavior was visualized in the average bond angle (<Ni-O-Ni>) with the hydrostatic pressure, which was related to the low sensitivity of the variation of the metal-insulating transition temperature (TMI ) for compounds with small R ions. Regarding the mechanical response, elastic constants, bulk and shear moduli were studied. The analysis of these quantities under internal and external pressure suggested the possibility of a structural phase transition. In the second part, we simulate using static computational modeling four phases of Al2O3 (R-3c, Pbcn, Pna21 and C2/m) and three phases of Al2SiO5 (silimanite, andalusite and kyanite) in order to adjust the potential for simulation satisfactory results of the aluminosilicate glass Al2O3 − SiO2. Initially, we defined the most appropriate charge for aluminum equal to 1.62e and, with that, we simulated the lattice parameters, unit cell volume, elastic constants and bulk modulus satisfactorily in the seven structures using static simulation and molecular dynamics. Now only using molecular dynamics, we compute the radial and cumulative distribution functions (gij (r) and nij (r)) to discuss bond lengths and coordination number in the structures of Al2SiO5. After validating the fitted potential in the crystal systems, we simulated the glass with 67% of Al2O3 and reproduced in good agreement the spectra of the normalized structural factor (S(Q)) and the correlation function (D(R)). Finally, we simulate four glasses with different percentages of Al2O3 and discuss the glass transition temperature Tg.Nesta tese apresentamos dois trabalhos desenvolvidos por técnicas de modelagem computacional clássica, ambos utilizando simulação estática, além do uso da dinâmica molecular no segundo trabalho. Na primeira parte simulamos cristais ortorrômbicos do tipo perovskita RN iO3, em que R = P r, N d, Sm, Eu, Gd, Dy, Y, Ho, Er, Tm, Y b, e Lu, na busca de entender a reposta estrutural e mecânica dessa família de niquelatos sob pressão externa (hidrostática) e interna (química). Ajustamos o potencial interatômico de forma satisfatória e verificamos a transferibilidade desse potencial simulando óxidos precursores. Os cálculos revelaram que o comportamento dos parâmetros de rede e do volume da celular unitária com o aumento da pressão hidrostática está de acordo com os dados encontrados na literatura relacionada. O mesmo pôde ser verificado para a evolução da anisotropia em função da pressão química. A influência de ambas pressões nos comprimentos de ligação (R-O, Ni-O) e nos ângulos de ligação (Ni-O1-Ni, Ni-O2-Ni) também foram investigadas. Um comportamento anômalo foi visualizado no ângulo de ligação médio () com a pressão hidrostática, o qual foi relacionado à baixa sensibilidade de variação da temperatura de transição metal-isolante (TMI) para compostos com íons R pequenos. A respeito da resposta mecânica, constantes elásticas, bulk e shear moduli foram estudados. A análise dessas quantidades sob pressão interna e externa sugeriram a possibilidade de transição de fase estrutural. Na segunda parte simulamos utilizando a modelagem computacional estática quatro fases do Al2O3 (R-3c, Pbcn, Pna21 e C2/m) e três fases do Al2SiO5 (silimanita, andalusita e cianita) afim de ajustar o potencial para simulação satisfatória do vidro de aluminossilicato Al2O3 − SiO2. Inicialmente definimos a carga mais apropriada do alumínio igual a 1,62e e com isso simulamos os parâmetros de rede, volume da célula unitária, constantes elásticas e bulk modulus de forma satisfatória nas sete estruturas utilizando através da simulação estática e dinâmica molecular. Agora somente utilizando dinâmica molecular, calculamos as funções de distribuição radiais e acumuladas (gij (r) e nij (r)) para discutir sobre comprimentos de ligação e número de coordenação nas estruturas de Al2SiO5. Após validação do potencial ajustado nos sistemas cristalinos, simulamos o vidro com 67% de Al2O3 e reproduzimos em bom acordo os espectros do fator estrutural normalizado (S(Q)) e da função de correlação (D(r)). Por fim, simulamos quatro vidros com porcentagens diferentes de Al2O3 e discutimos sobre a temperatura de transição vítrea Tg.São CristóvãoporSimulação estáticaDinâmica molecularNiquelatosAluminossilicatoÍons terras-rarasTransições de faseStatic simulationMolecular dynamicsNickelatesAluminosilicateAluminosilicatePhase transitionsCIENCIAS EXATAS E DA TERRA::FISICASimulação clássica para análise de terras-raras em cristais e em vidroinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPós-Graduação em FísicaUniversidade Federal de Sergipe (UFS)reponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/17825/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALANDRE_ MASSAO_ OTSUKA.pdfANDRE_ MASSAO_ OTSUKA.pdfapplication/pdf2911309https://ri.ufs.br/jspui/bitstream/riufs/17825/2/ANDRE_%20MASSAO_%20OTSUKA.pdfaa5821de369c39b8f33f834831695639MD52TEXTANDRE_ MASSAO_ OTSUKA.pdf.txtANDRE_ MASSAO_ OTSUKA.pdf.txtExtracted texttext/plain132261https://ri.ufs.br/jspui/bitstream/riufs/17825/3/ANDRE_%20MASSAO_%20OTSUKA.pdf.txt3e600d95db07aca67093d9b8da139e2dMD53THUMBNAILANDRE_ MASSAO_ OTSUKA.pdf.jpgANDRE_ MASSAO_ OTSUKA.pdf.jpgGenerated Thumbnailimage/jpeg1235https://ri.ufs.br/jspui/bitstream/riufs/17825/4/ANDRE_%20MASSAO_%20OTSUKA.pdf.jpgfb7bd8d7bb94f3f2fb98636fcdc9e8f5MD54riufs/178252023-08-07 20:58:05.437oai:ufs.br:riufs/17825TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2023-08-07T23:58:05Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Simulação clássica para análise de terras-raras em cristais e em vidro
title Simulação clássica para análise de terras-raras em cristais e em vidro
spellingShingle Simulação clássica para análise de terras-raras em cristais e em vidro
Otsuka, André Massao
Simulação estática
Dinâmica molecular
Niquelatos
Aluminossilicato
Íons terras-raras
Transições de fase
Static simulation
Molecular dynamics
Nickelates
Aluminosilicate
Aluminosilicate
Phase transitions
CIENCIAS EXATAS E DA TERRA::FISICA
title_short Simulação clássica para análise de terras-raras em cristais e em vidro
title_full Simulação clássica para análise de terras-raras em cristais e em vidro
title_fullStr Simulação clássica para análise de terras-raras em cristais e em vidro
title_full_unstemmed Simulação clássica para análise de terras-raras em cristais e em vidro
title_sort Simulação clássica para análise de terras-raras em cristais e em vidro
author Otsuka, André Massao
author_facet Otsuka, André Massao
author_role author
dc.contributor.author.fl_str_mv Otsuka, André Massao
dc.contributor.advisor1.fl_str_mv Santos, Marcos Antonio Couto dos
contributor_str_mv Santos, Marcos Antonio Couto dos
dc.subject.por.fl_str_mv Simulação estática
Dinâmica molecular
Niquelatos
Aluminossilicato
Íons terras-raras
Transições de fase
topic Simulação estática
Dinâmica molecular
Niquelatos
Aluminossilicato
Íons terras-raras
Transições de fase
Static simulation
Molecular dynamics
Nickelates
Aluminosilicate
Aluminosilicate
Phase transitions
CIENCIAS EXATAS E DA TERRA::FISICA
dc.subject.eng.fl_str_mv Static simulation
Molecular dynamics
Nickelates
Aluminosilicate
Aluminosilicate
Phase transitions
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::FISICA
description In this thesis, we present two works developed by classical computational modeling techniques. In the first part, we simulate perovskite-type orthorhombic crystals RN iO3, where R = P r, N d, Sm, Eu, Gd, Dy, Y, Ho, Er, Tm, Y b, and Lu, in search of understand the structural and mechanical response of this family of nickelates under external (hydrostatic) and internal (chemical) pressure. We fitted the interatomic potential satisfactorily and verified the transferability of this potential by simulating precursor oxides. The calculations revealed that the behavior of the lattice parameters and the unit cell volume with increasing hydrostatic pressure is in agreement with the data found in the related literature. The same could be verified for the evolution of anisotropy as a function of chemical pressure. The influence of both pressures on bond lengths (R-O, Ni-O) and bond angles (Ni-O1-Ni, Ni-O2-Ni) were also investigated. An anomalous behavior was visualized in the average bond angle (<Ni-O-Ni>) with the hydrostatic pressure, which was related to the low sensitivity of the variation of the metal-insulating transition temperature (TMI ) for compounds with small R ions. Regarding the mechanical response, elastic constants, bulk and shear moduli were studied. The analysis of these quantities under internal and external pressure suggested the possibility of a structural phase transition. In the second part, we simulate using static computational modeling four phases of Al2O3 (R-3c, Pbcn, Pna21 and C2/m) and three phases of Al2SiO5 (silimanite, andalusite and kyanite) in order to adjust the potential for simulation satisfactory results of the aluminosilicate glass Al2O3 − SiO2. Initially, we defined the most appropriate charge for aluminum equal to 1.62e and, with that, we simulated the lattice parameters, unit cell volume, elastic constants and bulk modulus satisfactorily in the seven structures using static simulation and molecular dynamics. Now only using molecular dynamics, we compute the radial and cumulative distribution functions (gij (r) and nij (r)) to discuss bond lengths and coordination number in the structures of Al2SiO5. After validating the fitted potential in the crystal systems, we simulated the glass with 67% of Al2O3 and reproduced in good agreement the spectra of the normalized structural factor (S(Q)) and the correlation function (D(R)). Finally, we simulate four glasses with different percentages of Al2O3 and discuss the glass transition temperature Tg.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-07-10T20:32:51Z
dc.date.available.fl_str_mv 2023-07-10T20:32:51Z
dc.date.issued.fl_str_mv 2023-06-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OTSUKA, André Massao. Simulação clássica para análise de terras-raras em cristais e em vidro. 2023. 85 f. Tese (Doutorado em Física) – Universidade Federal de Sergipe, São Cristóvão, 2023.
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/17825
identifier_str_mv OTSUKA, André Massao. Simulação clássica para análise de terras-raras em cristais e em vidro. 2023. 85 f. Tese (Doutorado em Física) – Universidade Federal de Sergipe, São Cristóvão, 2023.
url https://ri.ufs.br/jspui/handle/riufs/17825
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Física
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe (UFS)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/17825/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/17825/2/ANDRE_%20MASSAO_%20OTSUKA.pdf
https://ri.ufs.br/jspui/bitstream/riufs/17825/3/ANDRE_%20MASSAO_%20OTSUKA.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/17825/4/ANDRE_%20MASSAO_%20OTSUKA.pdf.jpg
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
aa5821de369c39b8f33f834831695639
3e600d95db07aca67093d9b8da139e2d
fb7bd8d7bb94f3f2fb98636fcdc9e8f5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1793351079498350592