Variação da temperatura de armazenamento em atmosfera controlada dinâmica de maçãs ‘maxi gala’

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Wendt, Lucas Mallmann lattes
Orientador(a): Brackmann, Auri lattes
Banca de defesa: Anese, Rogerio de Oliveira, Weber, Anderson
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Centro de Ciências Rurais
Programa de Pós-Graduação: Programa de Pós-Graduação em Agronomia
Departamento: Agronomia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufsm.br/handle/1/23376
Resumo: The increase of demand for quality apples throughout the year requires improvements in storage technology. Dynamic controlled atmosphere (DCA) storage that uses extremely low oxygen levels has been widespread worldwide, as it maintains the quality of apple stored for long term. Greater quality maintenance is possible because DCA allows determine the lowest oxygen limit (LOL) tolerated by apples. In addition to the technology to determine the LOL, temperature is one of the factors that most affects fruits quality during storage, because it affects the speed of chemical and biochemical reactions. This dissertation is composed of two papers with the following objectives: [1] To evaluate the effect of higher temperatures (3.0 ° C) and different strategies of temperature variation during DCA storage monitored by respiratory quotient 1.3 (DCA-RQ 1.3), comparing with different temperatures maintained constant in DCA-RQ 1.3 and with conventional controlled atmosphere (CA) storage with and without 1-methylcyclopropene (1-MCP) application; [2] Identify if low temperature in the first 30 days or during 240 days of storage in ACD-QR 1,3, improve the maintenance of physical and chemical quality, compared with CA and DCA storage monitored by chlorophyll fluorescence (DCA-CF), with and without 1-MCP application. ‘Maxi Gala’ apples were stored for 9 months in a controlled atmosphere (AC), AC+1-methylcyclopropene (1–MCP), dynamic controlled atmosphere monitored by chlorophyll fluorescence (ACD-FC) with and without 1-MCP application and ACD- QR 1.3 at constant temperatures of 0.5, 2.0 and 3.0 °C and temperature variation strategies (0.5/30d+3.0/240d °C), (0.5/30d+2.0/240d °C), (2.0/30d+3.0/240d °C), (0.5/30d+2.0/30d+3.0/210d °C) and (2.0/30d+0.5/240d °C) plus 7 and 14 days shelf life at 20 ºC. The storage of apples in DCA-RQ 1.3 at 2.0 °C results in fruit with higher physical-chemical quality, after 7 and 14 at 20 °C. After storage for another 14 days at 20 °C, the DCA-RQ 1.3 regardless of temperature maintained better physical-chemical quality compared to conventional CA with or without 1-MCP application. Temperature variation with (0.5/30d+2.0/240d °C) and (2.0/30d+3.0/240d °C) resulted in high flesh firmness and healthy fruit, due to lower flesh breakdown and decay incidence. In addition, the best temperature variation strategy in DCA-RQ 1.3 is the use of low temperature at the end of storage (2.0/30d+0.5/240d °C) or constant temperatures of 2.0 °C, which resulted in fruit with higher physical-chemical quality, after 7 and 14 days at 20 °C. Fruit stored in DCA-CF with or without 1-MCP application, showed physical-chemical qualities similar to those stored in DCA-RQ 1.3 regardless of temperature, after 14 days at 20 °C. Fruit stored in conventional CA with and without 1-MCP, after 7 and 14 days at 20 °C, showed lower flesh firmness and healthy fruit percentage, due to the high flesh breakdown and decay incidence. Therefore, the best storage conditions of apples for long periods, observed in this dissertation, follows the following order: DCA-RQ 1.3 at 2.0 °C better than ACD-QR 1.3 at 0.5, 3.0 °C and with temperature variation equal to DCA-CF with or without 1-MCP better than CA better than CA+1-MCP.
id UFSM-20_c371932944e6c5ef1b53012928730f33
oai_identifier_str oai:repositorio.ufsm.br:1/23376
network_acronym_str UFSM-20
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling 2021-12-20T14:06:51Z2021-12-20T14:06:51Z2021-04-26http://repositorio.ufsm.br/handle/1/23376The increase of demand for quality apples throughout the year requires improvements in storage technology. Dynamic controlled atmosphere (DCA) storage that uses extremely low oxygen levels has been widespread worldwide, as it maintains the quality of apple stored for long term. Greater quality maintenance is possible because DCA allows determine the lowest oxygen limit (LOL) tolerated by apples. In addition to the technology to determine the LOL, temperature is one of the factors that most affects fruits quality during storage, because it affects the speed of chemical and biochemical reactions. This dissertation is composed of two papers with the following objectives: [1] To evaluate the effect of higher temperatures (3.0 ° C) and different strategies of temperature variation during DCA storage monitored by respiratory quotient 1.3 (DCA-RQ 1.3), comparing with different temperatures maintained constant in DCA-RQ 1.3 and with conventional controlled atmosphere (CA) storage with and without 1-methylcyclopropene (1-MCP) application; [2] Identify if low temperature in the first 30 days or during 240 days of storage in ACD-QR 1,3, improve the maintenance of physical and chemical quality, compared with CA and DCA storage monitored by chlorophyll fluorescence (DCA-CF), with and without 1-MCP application. ‘Maxi Gala’ apples were stored for 9 months in a controlled atmosphere (AC), AC+1-methylcyclopropene (1–MCP), dynamic controlled atmosphere monitored by chlorophyll fluorescence (ACD-FC) with and without 1-MCP application and ACD- QR 1.3 at constant temperatures of 0.5, 2.0 and 3.0 °C and temperature variation strategies (0.5/30d+3.0/240d °C), (0.5/30d+2.0/240d °C), (2.0/30d+3.0/240d °C), (0.5/30d+2.0/30d+3.0/210d °C) and (2.0/30d+0.5/240d °C) plus 7 and 14 days shelf life at 20 ºC. The storage of apples in DCA-RQ 1.3 at 2.0 °C results in fruit with higher physical-chemical quality, after 7 and 14 at 20 °C. After storage for another 14 days at 20 °C, the DCA-RQ 1.3 regardless of temperature maintained better physical-chemical quality compared to conventional CA with or without 1-MCP application. Temperature variation with (0.5/30d+2.0/240d °C) and (2.0/30d+3.0/240d °C) resulted in high flesh firmness and healthy fruit, due to lower flesh breakdown and decay incidence. In addition, the best temperature variation strategy in DCA-RQ 1.3 is the use of low temperature at the end of storage (2.0/30d+0.5/240d °C) or constant temperatures of 2.0 °C, which resulted in fruit with higher physical-chemical quality, after 7 and 14 days at 20 °C. Fruit stored in DCA-CF with or without 1-MCP application, showed physical-chemical qualities similar to those stored in DCA-RQ 1.3 regardless of temperature, after 14 days at 20 °C. Fruit stored in conventional CA with and without 1-MCP, after 7 and 14 days at 20 °C, showed lower flesh firmness and healthy fruit percentage, due to the high flesh breakdown and decay incidence. Therefore, the best storage conditions of apples for long periods, observed in this dissertation, follows the following order: DCA-RQ 1.3 at 2.0 °C better than ACD-QR 1.3 at 0.5, 3.0 °C and with temperature variation equal to DCA-CF with or without 1-MCP better than CA better than CA+1-MCP.O aumento na demanda por maçãs de qualidade durante o ano todo exige melhorias na tecnologia de armazenamento. O armazenamento em atmosfera controlada dinâmica (ACD) que utiliza níveis extremamente baixos de oxigênio vem sendo difundida em todo mundo, pois mantém a qualidade de maçãs armazenadas por longos período. A maior manutenção da qualidade é possível porque a ACD permite determinar o limite mínimo de oxigênio (LMO) tolerado pelas maçãs. Além da tecnologia para determinar o LMO, a temperatura é um dos fatores que mais afeta a qualidade dos frutos durante o armazenamento, pois influencia a velocidade das reações bioquímicas. Esta dissertação é composta por dois artigos científicos com os seguintes objetivos: [1] Avaliar o efeito de temperaturas mais elevadas (3,0 °C) e diferentes estratégias de variação da temperatura no armazenamento em ACD monitorada pelo quociente respiratório 1,3 (ACD-QR 1,3), comparando com diferentes temperaturas mantidas constantes em ACD-QR 1,3 e com o armazenamento em atmosfera controlada (AC) convencional com e sem aplicação de 1-metilciclopropeno (1-MCP); [2] verificar se temperatura baixas nos primeiros 30 dias ou durante 240 dias de armazenamento em ACD-QR 1,3, melhorar a manutenção da qualidade física e química, comparando com o armazenamento em AC e ACD monitorada pelo fluorescência de clorofila (ACD-FC), com e sem aplicação de 1-MCP. Maçãs ‘Maxi Gala’ foram armazenadas por 9 meses em atmosfera controlada (AC), AC+1-metilciclopropeno (1–MCP), atmosfera controlada dinâmica monitorada pela fluorescência de clorofila (ACD-FC) com e sem 1-MCP e ACD-QR 1,3 em temperaturas constantes de 0,5, 2,0 e 3,0 °C e diferentes estratégias de variação da temperatura (0,5/30d+3,0/240d °C), (0,5/30d +2,0/240d °C), (2,0/30d +3,0/240d °C), (0,5/30d +2,0/30d +3,0/210d °C) e (2,0/30d +0,5/240d °C) e expostas por mais 7 e 14 dias à temperatura de 20 °C. O armazenamento de maçãs em ACD-QR 1,3 na temperatura constante de 2,0 °C resultou frutos com melhor qualidade nos parâmetros físico-química, após 7 e 14 dias a 20 °C. Após o armazenamento mais 14 dias a 20 °C, a ACD-QR 1,3 independente da temperatura, manteve a melhor qualidade físico-química em relação a AC convencional com ou sem aplicação de 1-MCP. A variação da temperatura com (0,5/30d+2,0/240d °C) e (2,0/30d +3,0/240d °C) resultaram maior firmeza de polpa e percentual de frutos sadios, devido à menor incidência de degenerescência de polpa e podridão. Além disso, as melhores estratégias de variar a temperatura em ACD-QR 1,3 é a utilização de temperatura baixa no final do armazenamento (2,0/30d+0,5/240d °C) ou temperaturas constantes de 2,0 °C, que resultam frutos com maior qualidade físico-química, após 7 e 14 dias a 20 °C. Frutos armazenados em ACD-FC com ou sem 1-MCP, apresentaram qualidades físico-químicas semelhantes aos armazenados em ACD-QR 1,3 independente da temperatura, após 14 dias a 20 °C. Frutos armazenados em AC convencional com e sem 1-MCP, após 7 e 14 dias a 20 °C, apresentaram menor firmeza de polpa e menor porcentagem de frutos sadios, decorrente da elevada incidência de podridão e degenerescência de polpa. Portanto, as melhores condições de armazenamento de maçãs por longos períodos, observado nos trabalhos desta dissertação, segue a seguinte ordem de prioridade: ACD-QR 1,3 na temperatura de 2,0 °C melhor que ACD-QR 1,3 nas temperaturas constantes de 0,5, 3,0 °C e com variação destas temperaturas, igual a ACD-FC com ou sem 1-MCP, melhor que AC e melhor que AC+1-MCP.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de Santa MariaCentro de Ciências RuraisPrograma de Pós-Graduação em AgronomiaUFSMBrasilAgronomiaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessMalus domesticaFirmeza de polpaDegenerescência de polpaLimite mínimo de oxigênioACD-QR 1,3Flesh firmnessFlesh breakdownLower oxygen limitCNPQ::CIENCIAS AGRARIAS::AGRONOMIAVariação da temperatura de armazenamento em atmosfera controlada dinâmica de maçãs ‘maxi gala’Variation of storage temperature in dynamic controlled atmosphere of ‘maxi gala’ applesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisBrackmann, Aurihttp://lattes.cnpq.br/1305840929832646Anese, Rogerio de OliveiraWeber, Andersonhttp://lattes.cnpq.br/7930201609194829Wendt, Lucas Mallmann500100000009600600600600600138ff5d6-1221-4258-86cc-aca3d85828a3a690b713-e834-486d-82fa-dbeee28479a0f4572a97-74a8-4194-a5e7-7515efd7fd72d526374c-6498-412b-afb6-d7258439d374reponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALDIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdfDIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdfDissertação de Mestradoapplication/pdf2429558http://repositorio.ufsm.br/bitstream/1/23376/1/DIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdf1c3369c7132c59f308a47fd5544b79abMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/23376/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81956http://repositorio.ufsm.br/bitstream/1/23376/3/license.txt2f0571ecee68693bd5cd3f17c1e075dfMD53TEXTDIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdf.txtDIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdf.txtExtracted texttext/plain239391http://repositorio.ufsm.br/bitstream/1/23376/4/DIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdf.txt01f74b0f6e5fea27f0b1055eef15f51fMD54THUMBNAILDIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdf.jpgDIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdf.jpgIM Thumbnailimage/jpeg4462http://repositorio.ufsm.br/bitstream/1/23376/5/DIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdf.jpg4f1d1535bc08fe4784fa5532fb8c9266MD551/233762021-12-21 03:00:33.966oai:repositorio.ufsm.br:1/23376TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU2FudGEgTWFyaWEgKFVGU00pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZQplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVGU00gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbwpwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUZTTSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU00Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZTTQosIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNNIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKQpkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcwpjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRepositório Institucionalhttp://repositorio.ufsm.br/PUBhttp://repositorio.ufsm.br/oai/requestopendoar:39132021-12-21T06:00:33Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Variação da temperatura de armazenamento em atmosfera controlada dinâmica de maçãs ‘maxi gala’
dc.title.alternative.eng.fl_str_mv Variation of storage temperature in dynamic controlled atmosphere of ‘maxi gala’ apples
title Variação da temperatura de armazenamento em atmosfera controlada dinâmica de maçãs ‘maxi gala’
spellingShingle Variação da temperatura de armazenamento em atmosfera controlada dinâmica de maçãs ‘maxi gala’
Wendt, Lucas Mallmann
Malus domestica
Firmeza de polpa
Degenerescência de polpa
Limite mínimo de oxigênio
ACD-QR 1,3
Flesh firmness
Flesh breakdown
Lower oxygen limit
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Variação da temperatura de armazenamento em atmosfera controlada dinâmica de maçãs ‘maxi gala’
title_full Variação da temperatura de armazenamento em atmosfera controlada dinâmica de maçãs ‘maxi gala’
title_fullStr Variação da temperatura de armazenamento em atmosfera controlada dinâmica de maçãs ‘maxi gala’
title_full_unstemmed Variação da temperatura de armazenamento em atmosfera controlada dinâmica de maçãs ‘maxi gala’
title_sort Variação da temperatura de armazenamento em atmosfera controlada dinâmica de maçãs ‘maxi gala’
author Wendt, Lucas Mallmann
author_facet Wendt, Lucas Mallmann
author_role author
dc.contributor.advisor1.fl_str_mv Brackmann, Auri
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1305840929832646
dc.contributor.referee1.fl_str_mv Anese, Rogerio de Oliveira
dc.contributor.referee2.fl_str_mv Weber, Anderson
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7930201609194829
dc.contributor.author.fl_str_mv Wendt, Lucas Mallmann
contributor_str_mv Brackmann, Auri
Anese, Rogerio de Oliveira
Weber, Anderson
dc.subject.por.fl_str_mv Malus domestica
Firmeza de polpa
Degenerescência de polpa
Limite mínimo de oxigênio
ACD-QR 1,3
topic Malus domestica
Firmeza de polpa
Degenerescência de polpa
Limite mínimo de oxigênio
ACD-QR 1,3
Flesh firmness
Flesh breakdown
Lower oxygen limit
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
dc.subject.eng.fl_str_mv Flesh firmness
Flesh breakdown
Lower oxygen limit
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description The increase of demand for quality apples throughout the year requires improvements in storage technology. Dynamic controlled atmosphere (DCA) storage that uses extremely low oxygen levels has been widespread worldwide, as it maintains the quality of apple stored for long term. Greater quality maintenance is possible because DCA allows determine the lowest oxygen limit (LOL) tolerated by apples. In addition to the technology to determine the LOL, temperature is one of the factors that most affects fruits quality during storage, because it affects the speed of chemical and biochemical reactions. This dissertation is composed of two papers with the following objectives: [1] To evaluate the effect of higher temperatures (3.0 ° C) and different strategies of temperature variation during DCA storage monitored by respiratory quotient 1.3 (DCA-RQ 1.3), comparing with different temperatures maintained constant in DCA-RQ 1.3 and with conventional controlled atmosphere (CA) storage with and without 1-methylcyclopropene (1-MCP) application; [2] Identify if low temperature in the first 30 days or during 240 days of storage in ACD-QR 1,3, improve the maintenance of physical and chemical quality, compared with CA and DCA storage monitored by chlorophyll fluorescence (DCA-CF), with and without 1-MCP application. ‘Maxi Gala’ apples were stored for 9 months in a controlled atmosphere (AC), AC+1-methylcyclopropene (1–MCP), dynamic controlled atmosphere monitored by chlorophyll fluorescence (ACD-FC) with and without 1-MCP application and ACD- QR 1.3 at constant temperatures of 0.5, 2.0 and 3.0 °C and temperature variation strategies (0.5/30d+3.0/240d °C), (0.5/30d+2.0/240d °C), (2.0/30d+3.0/240d °C), (0.5/30d+2.0/30d+3.0/210d °C) and (2.0/30d+0.5/240d °C) plus 7 and 14 days shelf life at 20 ºC. The storage of apples in DCA-RQ 1.3 at 2.0 °C results in fruit with higher physical-chemical quality, after 7 and 14 at 20 °C. After storage for another 14 days at 20 °C, the DCA-RQ 1.3 regardless of temperature maintained better physical-chemical quality compared to conventional CA with or without 1-MCP application. Temperature variation with (0.5/30d+2.0/240d °C) and (2.0/30d+3.0/240d °C) resulted in high flesh firmness and healthy fruit, due to lower flesh breakdown and decay incidence. In addition, the best temperature variation strategy in DCA-RQ 1.3 is the use of low temperature at the end of storage (2.0/30d+0.5/240d °C) or constant temperatures of 2.0 °C, which resulted in fruit with higher physical-chemical quality, after 7 and 14 days at 20 °C. Fruit stored in DCA-CF with or without 1-MCP application, showed physical-chemical qualities similar to those stored in DCA-RQ 1.3 regardless of temperature, after 14 days at 20 °C. Fruit stored in conventional CA with and without 1-MCP, after 7 and 14 days at 20 °C, showed lower flesh firmness and healthy fruit percentage, due to the high flesh breakdown and decay incidence. Therefore, the best storage conditions of apples for long periods, observed in this dissertation, follows the following order: DCA-RQ 1.3 at 2.0 °C better than ACD-QR 1.3 at 0.5, 3.0 °C and with temperature variation equal to DCA-CF with or without 1-MCP better than CA better than CA+1-MCP.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-12-20T14:06:51Z
dc.date.available.fl_str_mv 2021-12-20T14:06:51Z
dc.date.issued.fl_str_mv 2021-04-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/23376
url http://repositorio.ufsm.br/handle/1/23376
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 500100000009
dc.relation.confidence.fl_str_mv 600
600
600
600
600
dc.relation.authority.fl_str_mv 138ff5d6-1221-4258-86cc-aca3d85828a3
a690b713-e834-486d-82fa-dbeee28479a0
f4572a97-74a8-4194-a5e7-7515efd7fd72
d526374c-6498-412b-afb6-d7258439d374
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Rurais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Agronomia
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Agronomia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/23376/1/DIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdf
http://repositorio.ufsm.br/bitstream/1/23376/2/license_rdf
http://repositorio.ufsm.br/bitstream/1/23376/3/license.txt
http://repositorio.ufsm.br/bitstream/1/23376/4/DIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdf.txt
http://repositorio.ufsm.br/bitstream/1/23376/5/DIS_PPGAGRONOMIA_2021_WENDT_LUCAS.pdf.jpg
bitstream.checksum.fl_str_mv 1c3369c7132c59f308a47fd5544b79ab
4460e5956bc1d1639be9ae6146a50347
2f0571ecee68693bd5cd3f17c1e075df
01f74b0f6e5fea27f0b1055eef15f51f
4f1d1535bc08fe4784fa5532fb8c9266
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv
_version_ 1794524396275105792