Desbalanço superóxido-peróxido de hidrogênio versus seleno-L-metionina e castanha-do-Brasil: regulação diferencial in vitro de (seleno)enzimas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Schott, Karen Lilian lattes
Orientador(a): Cruz, Ivana Beatrice Mânica da lattes
Banca de defesa: Bica, Claudia Giuliano lattes, Dalla Corte, Cristiane Lenz lattes, Chitolina, Maria Rosa lattes, Sagrillo, Michele Rorato lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica
Departamento: Bioquímica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufsm.br/handle/1/18976
Resumo: Introduction: The coupled enzymatic reactions between the manganese-dependent superoxide dismutase (MnSOD/SOD2) and selenoenzyme glutathione peroxidase-1 (GPx-1) selenoenzyme are essential for mitochondrial redox balance in aerobic cells. SOD2 dismutates the superoxide anion (O2 ) to hydrogen peroxide (H2O2) which is reduced to water by GPx-1. At low concentrations, reactive oxygen species (EROs) O2 and H2O2 are essential for the maintenance of the body's homeostasis. However, in the single nucleotide polymorphism (SNP) in the gene that codes for SOD2 (Val16Ala-SOD2) the AA genotype is 30-40% more efficient than the wild VV causing a superoxide (S)-hydrogen peroxide (HP) imbalance, associated to development of chronic noncommunicable diseases. The VV genotype was associated with cardiometabolic diseases and metastatic breast cancer. Whereas, AA genotype have been related to an increased risk of breast, prostate and colorectal cancer, suggesting that the excess of H2O2 generated could be higher than the antioxidant capacity of GPx-1. In addition, a previous study showed that the risk of breast cancer decreased in an expressive manner in women carriers of AA genotype who reported a diet rich in fruits and vegetables. However, the potential benefic effect of Brazil nut, rich in seleno-L-methionine (SeMet) and antioxidant phytochemicals, on the regulation of cellular oxidative metabolism had not yet been investigated. To test this hypothesis, we aimed to perform a literature review work about brazil nuts and, in parallel, to evaluate the influence of the genetic and chemically induced S-HP imbalance on the in vitro effect of the purified SeMet and that contained in the Brazil nut aqueous extract (BNAE), through the analysis of antioxidant enzymes modulation and other variables. Methods: In the Protocol 1, peripheral blood mononuclear cells (PBMC) were genotyped for the Val16Ala-SOD2 polymorphism and treated with purified SeMet for 24 h in RPMI cell culture medium. In the Protocol 2, HFF-1 fibroblasts were S-HP chemically imbalanced with MnTBAP (AA-SOD2-like) and Paraquat (VV-SOD2-like) and after treated with Brazil nut aqueous extract (BNAE) for 24 h in DMEM 15% medium. In the both protocols, cellular growth and ROS production were evaluated using concentration-effect curves in PBMC (SeMet (0; 1; 3; 10; 30; 100; 300 e 1000 nM)) and in HFF-1 fibroblasts (MnTBAP and Paraquat (0, 0.01; 0.03; 0.1; 0.3; 0.9 μM), and Se in the BNAE (0; 1.25; 2.5; 25; 50; 75; 100; 125 ng Se/ mL BNAE)). The effective concentration was used to evaluate gene expression of antioxidant enzymes CuZnSOD (SOD1), SOD2, GPx-1, thioredoxin reductase (TrxR) and catalase (CAT), and oxidative metabolism parameters in both. Evaluation of the activity of antioxidant enzymes, 8-hydroxy-2’-deoxyguanosine (8-OHdG) and apoptosis was performed only in Protocol 1. Results: Effective concentrations of SeMet, MnTBAP and / or Paraquat and Se in the BNAE were 1 nM; 0.9 μM and 75 ng Se / mL, respectively. The regulation of gene expression was differential between protocols 1 and 2, whereas general oxidative parameters decreased in both protocols. In the Protocol 1, relative to negative control, CMSP treated with 1 nM purified SeMet decreased apoptosis, 8-OHdG and CAT expression in all genotypes, but CAT activity decreased only in AA genotype. In the AA-PBMC, SOD expression and activity increased. Gene expression of GPx-1 unchanged and TrxR-1 decreased expressively while GPx-1 and TrxR-1 activities were modulated positively. In the VV-PBMC, the expression of all enzymes decreased, except for TrxR-1. Positive activity modulation was observed for GPx-1, TrxR-1 and CAT but negative for SOD. In the Protocol 2, BNAE- treated fibroblasts AA and VV-SOD2-like increased CAT gene expression following SOD2 standard. SOD1 and GPx-1 decreased while TrxR-1 and CAT increased in AA-SOD2-like. Positive modulation of activity was observed for GPx-1, TrxR-1 and CAT but negative for SOD. In the Protocol 2, AA and VV-SOD2-like fibroblasts treated with BNAE increased CAT gene expression following SOD2 standard. SOD1 and GPx-1 decreased while TrxR-1 and CAT increased in AA-SOD2-like. Diversely, in BNAE- treated VV-SOD2-like, expression of SOD1, GPx, and CAT increased, whereas TrxR-1 unchanged. In general, results showed a compensatory and nutrigenetic effects in the PBMC treated with purified SeMet, while imbalanced S-HP fibroblasts treated with SeMet associated to the chemical matrix of BNAE showed synergistic and nutrigenomic effects.
id UFSM_28de25cae4bcded7905c60b481c38594
oai_identifier_str oai:repositorio.ufsm.br:1/18976
network_acronym_str UFSM
network_name_str Biblioteca Digital de Teses e Dissertações do UFSM
repository_id_str
spelling 2019-11-19T21:23:44Z2019-11-19T21:23:44Z2017-08-01http://repositorio.ufsm.br/handle/1/18976Introduction: The coupled enzymatic reactions between the manganese-dependent superoxide dismutase (MnSOD/SOD2) and selenoenzyme glutathione peroxidase-1 (GPx-1) selenoenzyme are essential for mitochondrial redox balance in aerobic cells. SOD2 dismutates the superoxide anion (O2 ) to hydrogen peroxide (H2O2) which is reduced to water by GPx-1. At low concentrations, reactive oxygen species (EROs) O2 and H2O2 are essential for the maintenance of the body's homeostasis. However, in the single nucleotide polymorphism (SNP) in the gene that codes for SOD2 (Val16Ala-SOD2) the AA genotype is 30-40% more efficient than the wild VV causing a superoxide (S)-hydrogen peroxide (HP) imbalance, associated to development of chronic noncommunicable diseases. The VV genotype was associated with cardiometabolic diseases and metastatic breast cancer. Whereas, AA genotype have been related to an increased risk of breast, prostate and colorectal cancer, suggesting that the excess of H2O2 generated could be higher than the antioxidant capacity of GPx-1. In addition, a previous study showed that the risk of breast cancer decreased in an expressive manner in women carriers of AA genotype who reported a diet rich in fruits and vegetables. However, the potential benefic effect of Brazil nut, rich in seleno-L-methionine (SeMet) and antioxidant phytochemicals, on the regulation of cellular oxidative metabolism had not yet been investigated. To test this hypothesis, we aimed to perform a literature review work about brazil nuts and, in parallel, to evaluate the influence of the genetic and chemically induced S-HP imbalance on the in vitro effect of the purified SeMet and that contained in the Brazil nut aqueous extract (BNAE), through the analysis of antioxidant enzymes modulation and other variables. Methods: In the Protocol 1, peripheral blood mononuclear cells (PBMC) were genotyped for the Val16Ala-SOD2 polymorphism and treated with purified SeMet for 24 h in RPMI cell culture medium. In the Protocol 2, HFF-1 fibroblasts were S-HP chemically imbalanced with MnTBAP (AA-SOD2-like) and Paraquat (VV-SOD2-like) and after treated with Brazil nut aqueous extract (BNAE) for 24 h in DMEM 15% medium. In the both protocols, cellular growth and ROS production were evaluated using concentration-effect curves in PBMC (SeMet (0; 1; 3; 10; 30; 100; 300 e 1000 nM)) and in HFF-1 fibroblasts (MnTBAP and Paraquat (0, 0.01; 0.03; 0.1; 0.3; 0.9 μM), and Se in the BNAE (0; 1.25; 2.5; 25; 50; 75; 100; 125 ng Se/ mL BNAE)). The effective concentration was used to evaluate gene expression of antioxidant enzymes CuZnSOD (SOD1), SOD2, GPx-1, thioredoxin reductase (TrxR) and catalase (CAT), and oxidative metabolism parameters in both. Evaluation of the activity of antioxidant enzymes, 8-hydroxy-2’-deoxyguanosine (8-OHdG) and apoptosis was performed only in Protocol 1. Results: Effective concentrations of SeMet, MnTBAP and / or Paraquat and Se in the BNAE were 1 nM; 0.9 μM and 75 ng Se / mL, respectively. The regulation of gene expression was differential between protocols 1 and 2, whereas general oxidative parameters decreased in both protocols. In the Protocol 1, relative to negative control, CMSP treated with 1 nM purified SeMet decreased apoptosis, 8-OHdG and CAT expression in all genotypes, but CAT activity decreased only in AA genotype. In the AA-PBMC, SOD expression and activity increased. Gene expression of GPx-1 unchanged and TrxR-1 decreased expressively while GPx-1 and TrxR-1 activities were modulated positively. In the VV-PBMC, the expression of all enzymes decreased, except for TrxR-1. Positive activity modulation was observed for GPx-1, TrxR-1 and CAT but negative for SOD. In the Protocol 2, BNAE- treated fibroblasts AA and VV-SOD2-like increased CAT gene expression following SOD2 standard. SOD1 and GPx-1 decreased while TrxR-1 and CAT increased in AA-SOD2-like. Positive modulation of activity was observed for GPx-1, TrxR-1 and CAT but negative for SOD. In the Protocol 2, AA and VV-SOD2-like fibroblasts treated with BNAE increased CAT gene expression following SOD2 standard. SOD1 and GPx-1 decreased while TrxR-1 and CAT increased in AA-SOD2-like. Diversely, in BNAE- treated VV-SOD2-like, expression of SOD1, GPx, and CAT increased, whereas TrxR-1 unchanged. In general, results showed a compensatory and nutrigenetic effects in the PBMC treated with purified SeMet, while imbalanced S-HP fibroblasts treated with SeMet associated to the chemical matrix of BNAE showed synergistic and nutrigenomic effects.As reações enzimáticas acopladas entre as enzimas superóxido dismutase dependente de manganês (MnSOD/SOD2) e a selenoenzima glutationa peroxidase-1 (GPx-1) são essenciais para o equilíbrio redox mitocondrial em células aeróbias. A SOD2 dismuta o superóxido (O2 ), oriundo da respiração celular, à peróxido de hidrogênio (H2O2) que é reduzido à água e oxigênio molecular pela GPx-1. O2 e H2O2 são espécies reativas de oxigênio (EROs), em baixas concentrações, são sinalizadores endógenos essenciais para a manutenção da homeostasia do organismo. No entanto, no polimorfismo de núcleotídeo único (SNP) do gene codificador da SOD2 (Val16Ala-SOD2), a enzima SOD2 é 30-40% mais eficiente no genótipo AA em relação ao VV selvagem, o que resulta em desbalanço superóxido (S)-peróxido de hidrogênio (PH) associado ao desenvolvimento de doenças crônicas não transmissíveis. O genótipo o VV tem sido associado às doenças cardiometabólicas e ao câncer de mama metastático e o genótipo AA tem sido relacionado ao aumento do risco de câncer de mama, próstata e colorretal, sugerindo que o excesso de H2O2 produzido suplanta a capacidade antioxidante da GPx-1. Adicionalmente, estudo prévio mostrou que o risco de câncer de mama diminuiu expressivamente em mulheres portadoras do genótipo AA que relataram dieta rica em frutas e vegetais. Contudo, o potencial efeito benéfico da castanha-do-brasil, rica em SeMet e fitoquímicos antioxidantes, na regulação do metabolismo oxidativo ainda não havia sido investigado. Para testar esta hipótese, objetivamos realizar um trabalho de revisão na literatura sobre a castanha-do-brasil e, em paralelo, avaliar a influência do desbalanço S-PH, genético e induzido quimicamente, no efeito in vitro da SeMet, purificada e a contida no extrato aquoso da castanha-do-brasil (EACB), via análise da modulação das enzimas antioxidantes. Métodos: Protocolo 1, células mononucleares do sangue periférico (CMSP) foram genotipadas para o polimorfismo Val16Ala-SOD2 e tratadas com SeMet purificada por 24 h em meio de cultura RPMI. No segundo protocolo, fibroblastos HFF-1 foram quimicamente S-PH desbalanceados com a porfirina MnTBAP (AA-SOD2-like) ou Paraquat (VV-SOD2-like) e tratados com EACB por 24 h em meio DMEM 15%. Foram avaliados crescimento celular e produção de EROs usando curvas de concentração-efeito em CMSP (SeMet (0; 1; 3; 10; 30; 100; 300 e 1000 nM)) e em fibroblastos HFF-1 (MnTBAP e Paraquat (0, 0,01; 0,03; 0,1; 0,3; 0,9 μM), e Se no EACB (0; 1,25; 2,5; 25; 50; 75; 100; 125 ng Se/ mL)). A concentração efetiva foi utilizada para avaliar os parâmetros do metabolismo oxidativo e a expressão gênica das enzimas antioxidantes CuZnSOD (SOD1), SOD2, GPx-1, tioredoxina redutase (TrxR-1) e catalase (CAT). A avaliação da atividade das enzimas antioxidantes, 8-hidroxi-2-deoxiguanosina (8-OHdG) e apoptose foi realizada somente no Protocolo 1. As concentrações efetivas de SeMet, MnTBAP e/ou Paraquat e Se no EACB foram 1 nM; 0,9 μM e 75 ng Se/ mL, respectivamente. A regulação da expressão gênica foi diferencial entre os protocolos 1 e 2, mas o estresse oxidativo diminuiu em ambos. No Protocolo 1, relativo ao controle negativo, apoptose, 8-OHdG e a expressão da CAT diminuíram em todos os genótipos, mas a atividade CAT diminuiu somente no AA. Nas AA-CMSP, expressão e atividade SOD aumentaram; a expressão da GPx-1 não alterou e da TrxR-1 baixou expressivamente, mas a atividade de ambas foi modulada positivamente. Nas VV-CMSP, a expressão de todas as enzimas diminuiu, exceto TrxR-1, com modulação positiva da atividade da GPx-1, TrxR-1 e CAT, mas negativa para SOD. No Protocolo 2, nos fibroblastos AA e VV-SOD2-like tratados com EACB, a expressão gênica da CAT seguiu o padrão SOD2 em AA e VV-SOD2-like. Porém, a expressão da SOD1 e GPx-1 diminuíram enquanto que TrxR-1 e CAT aumentaram em AA-SOD2-like. Em VV-SOD2-like, a expressão da SOD1, GPx-1 e CAT aumentaram e TrxR-1 não alterou. A relação GPx-1 e TrxR-1 ocorreu de maneira compensatória com efeito nutrigenético nas CMSP tratadas com SeMet purificada, mas de maneira sinérgica com um maior efeito nutrigenômico nos fibroblastos S-PH desbalanceados tratados com SeMet associada à matriz química do EACB.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de Santa MariaCentro de Ciências Naturais e ExatasPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica ToxicológicaUFSMBrasilBioquímicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessPolimorfismo Val16Ala-MnSODSelênioGPx-1TrxRNutrigenômicaNutrigenéticaVal16Ala-SOD2 polymorphismSelenimNutrigenomicsNutrigeneticsCNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICADesbalanço superóxido-peróxido de hidrogênio versus seleno-L-metionina e castanha-do-Brasil: regulação diferencial in vitro de (seleno)enzimasSuperoxide-hydrogen peroxide imbalance: in vitro modulation on seleno-L-methionine and Brazil nut effectinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisCruz, Ivana Beatrice Mânica dahttp://lattes.cnpq.br/3426369324110716Bica, Claudia Giulianohttp://lattes.cnpq.br/4488122519766245Dalla Corte, Cristiane Lenzhttp://lattes.cnpq.br/5296284169605317Chitolina, Maria Rosahttp://lattes.cnpq.br/4401319386725357Sagrillo, Michele Roratohttp://lattes.cnpq.br/2566285176244747http://lattes.cnpq.br/1374401185065010Schott, Karen Lilian2008000000026000b5fcfe0-b017-4163-80e2-17c110fbcf01d648e330-796f-4c55-862d-c0ce65fff73876619ed3-b345-4003-a812-02e580d1ec42ed6a73a6-ab4c-4b6e-ac2a-ec6b5c7c040b638761a9-96c1-4b36-86ad-ee28c48a73d9e37af8b8-3d08-474c-b996-ee17aaf6b3a8reponame:Biblioteca Digital de Teses e Dissertações do UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALTES_PPGBT_2017_SCHOTT_KAREN.pdfTES_PPGBT_2017_SCHOTT_KAREN.pdfTese de Doutoradoapplication/pdf7161225http://repositorio.ufsm.br/bitstream/1/18976/1/TES_PPGBT_2017_SCHOTT_KAREN.pdf954f0339aa25116e23128c5f59be695bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/18976/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81956http://repositorio.ufsm.br/bitstream/1/18976/3/license.txt2f0571ecee68693bd5cd3f17c1e075dfMD53TEXTTES_PPGBT_2017_SCHOTT_KAREN.pdf.txtTES_PPGBT_2017_SCHOTT_KAREN.pdf.txtExtracted texttext/plain190321http://repositorio.ufsm.br/bitstream/1/18976/4/TES_PPGBT_2017_SCHOTT_KAREN.pdf.txt7edd2a68b0f9b805ad7df088e91e1b34MD54THUMBNAILTES_PPGBT_2017_SCHOTT_KAREN.pdf.jpgTES_PPGBT_2017_SCHOTT_KAREN.pdf.jpgIM Thumbnailimage/jpeg4555http://repositorio.ufsm.br/bitstream/1/18976/5/TES_PPGBT_2017_SCHOTT_KAREN.pdf.jpg29a6fa8a17c7ac57a2dba812ef75aca1MD551/189762022-04-29 14:55:56.264oai:repositorio.ufsm.br:1/18976TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU2FudGEgTWFyaWEgKFVGU00pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZQplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVGU00gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbwpwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUZTTSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU00Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZTTQosIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNNIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKQpkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcwpjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKBiblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-04-29T17:55:56Biblioteca Digital de Teses e Dissertações do UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Desbalanço superóxido-peróxido de hidrogênio versus seleno-L-metionina e castanha-do-Brasil: regulação diferencial in vitro de (seleno)enzimas
dc.title.alternative.eng.fl_str_mv Superoxide-hydrogen peroxide imbalance: in vitro modulation on seleno-L-methionine and Brazil nut effect
title Desbalanço superóxido-peróxido de hidrogênio versus seleno-L-metionina e castanha-do-Brasil: regulação diferencial in vitro de (seleno)enzimas
spellingShingle Desbalanço superóxido-peróxido de hidrogênio versus seleno-L-metionina e castanha-do-Brasil: regulação diferencial in vitro de (seleno)enzimas
Schott, Karen Lilian
Polimorfismo Val16Ala-MnSOD
Selênio
GPx-1
TrxR
Nutrigenômica
Nutrigenética
Val16Ala-SOD2 polymorphism
Selenim
Nutrigenomics
Nutrigenetics
CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA
title_short Desbalanço superóxido-peróxido de hidrogênio versus seleno-L-metionina e castanha-do-Brasil: regulação diferencial in vitro de (seleno)enzimas
title_full Desbalanço superóxido-peróxido de hidrogênio versus seleno-L-metionina e castanha-do-Brasil: regulação diferencial in vitro de (seleno)enzimas
title_fullStr Desbalanço superóxido-peróxido de hidrogênio versus seleno-L-metionina e castanha-do-Brasil: regulação diferencial in vitro de (seleno)enzimas
title_full_unstemmed Desbalanço superóxido-peróxido de hidrogênio versus seleno-L-metionina e castanha-do-Brasil: regulação diferencial in vitro de (seleno)enzimas
title_sort Desbalanço superóxido-peróxido de hidrogênio versus seleno-L-metionina e castanha-do-Brasil: regulação diferencial in vitro de (seleno)enzimas
author Schott, Karen Lilian
author_facet Schott, Karen Lilian
author_role author
dc.contributor.advisor1.fl_str_mv Cruz, Ivana Beatrice Mânica da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3426369324110716
dc.contributor.referee1.fl_str_mv Bica, Claudia Giuliano
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/4488122519766245
dc.contributor.referee2.fl_str_mv Dalla Corte, Cristiane Lenz
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5296284169605317
dc.contributor.referee3.fl_str_mv Chitolina, Maria Rosa
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4401319386725357
dc.contributor.referee4.fl_str_mv Sagrillo, Michele Rorato
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/2566285176244747
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1374401185065010
dc.contributor.author.fl_str_mv Schott, Karen Lilian
contributor_str_mv Cruz, Ivana Beatrice Mânica da
Bica, Claudia Giuliano
Dalla Corte, Cristiane Lenz
Chitolina, Maria Rosa
Sagrillo, Michele Rorato
dc.subject.por.fl_str_mv Polimorfismo Val16Ala-MnSOD
Selênio
GPx-1
TrxR
Nutrigenômica
Nutrigenética
topic Polimorfismo Val16Ala-MnSOD
Selênio
GPx-1
TrxR
Nutrigenômica
Nutrigenética
Val16Ala-SOD2 polymorphism
Selenim
Nutrigenomics
Nutrigenetics
CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA
dc.subject.eng.fl_str_mv Val16Ala-SOD2 polymorphism
Selenim
Nutrigenomics
Nutrigenetics
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA
description Introduction: The coupled enzymatic reactions between the manganese-dependent superoxide dismutase (MnSOD/SOD2) and selenoenzyme glutathione peroxidase-1 (GPx-1) selenoenzyme are essential for mitochondrial redox balance in aerobic cells. SOD2 dismutates the superoxide anion (O2 ) to hydrogen peroxide (H2O2) which is reduced to water by GPx-1. At low concentrations, reactive oxygen species (EROs) O2 and H2O2 are essential for the maintenance of the body's homeostasis. However, in the single nucleotide polymorphism (SNP) in the gene that codes for SOD2 (Val16Ala-SOD2) the AA genotype is 30-40% more efficient than the wild VV causing a superoxide (S)-hydrogen peroxide (HP) imbalance, associated to development of chronic noncommunicable diseases. The VV genotype was associated with cardiometabolic diseases and metastatic breast cancer. Whereas, AA genotype have been related to an increased risk of breast, prostate and colorectal cancer, suggesting that the excess of H2O2 generated could be higher than the antioxidant capacity of GPx-1. In addition, a previous study showed that the risk of breast cancer decreased in an expressive manner in women carriers of AA genotype who reported a diet rich in fruits and vegetables. However, the potential benefic effect of Brazil nut, rich in seleno-L-methionine (SeMet) and antioxidant phytochemicals, on the regulation of cellular oxidative metabolism had not yet been investigated. To test this hypothesis, we aimed to perform a literature review work about brazil nuts and, in parallel, to evaluate the influence of the genetic and chemically induced S-HP imbalance on the in vitro effect of the purified SeMet and that contained in the Brazil nut aqueous extract (BNAE), through the analysis of antioxidant enzymes modulation and other variables. Methods: In the Protocol 1, peripheral blood mononuclear cells (PBMC) were genotyped for the Val16Ala-SOD2 polymorphism and treated with purified SeMet for 24 h in RPMI cell culture medium. In the Protocol 2, HFF-1 fibroblasts were S-HP chemically imbalanced with MnTBAP (AA-SOD2-like) and Paraquat (VV-SOD2-like) and after treated with Brazil nut aqueous extract (BNAE) for 24 h in DMEM 15% medium. In the both protocols, cellular growth and ROS production were evaluated using concentration-effect curves in PBMC (SeMet (0; 1; 3; 10; 30; 100; 300 e 1000 nM)) and in HFF-1 fibroblasts (MnTBAP and Paraquat (0, 0.01; 0.03; 0.1; 0.3; 0.9 μM), and Se in the BNAE (0; 1.25; 2.5; 25; 50; 75; 100; 125 ng Se/ mL BNAE)). The effective concentration was used to evaluate gene expression of antioxidant enzymes CuZnSOD (SOD1), SOD2, GPx-1, thioredoxin reductase (TrxR) and catalase (CAT), and oxidative metabolism parameters in both. Evaluation of the activity of antioxidant enzymes, 8-hydroxy-2’-deoxyguanosine (8-OHdG) and apoptosis was performed only in Protocol 1. Results: Effective concentrations of SeMet, MnTBAP and / or Paraquat and Se in the BNAE were 1 nM; 0.9 μM and 75 ng Se / mL, respectively. The regulation of gene expression was differential between protocols 1 and 2, whereas general oxidative parameters decreased in both protocols. In the Protocol 1, relative to negative control, CMSP treated with 1 nM purified SeMet decreased apoptosis, 8-OHdG and CAT expression in all genotypes, but CAT activity decreased only in AA genotype. In the AA-PBMC, SOD expression and activity increased. Gene expression of GPx-1 unchanged and TrxR-1 decreased expressively while GPx-1 and TrxR-1 activities were modulated positively. In the VV-PBMC, the expression of all enzymes decreased, except for TrxR-1. Positive activity modulation was observed for GPx-1, TrxR-1 and CAT but negative for SOD. In the Protocol 2, BNAE- treated fibroblasts AA and VV-SOD2-like increased CAT gene expression following SOD2 standard. SOD1 and GPx-1 decreased while TrxR-1 and CAT increased in AA-SOD2-like. Positive modulation of activity was observed for GPx-1, TrxR-1 and CAT but negative for SOD. In the Protocol 2, AA and VV-SOD2-like fibroblasts treated with BNAE increased CAT gene expression following SOD2 standard. SOD1 and GPx-1 decreased while TrxR-1 and CAT increased in AA-SOD2-like. Diversely, in BNAE- treated VV-SOD2-like, expression of SOD1, GPx, and CAT increased, whereas TrxR-1 unchanged. In general, results showed a compensatory and nutrigenetic effects in the PBMC treated with purified SeMet, while imbalanced S-HP fibroblasts treated with SeMet associated to the chemical matrix of BNAE showed synergistic and nutrigenomic effects.
publishDate 2017
dc.date.issued.fl_str_mv 2017-08-01
dc.date.accessioned.fl_str_mv 2019-11-19T21:23:44Z
dc.date.available.fl_str_mv 2019-11-19T21:23:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/18976
url http://repositorio.ufsm.br/handle/1/18976
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 200800000002
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv 0b5fcfe0-b017-4163-80e2-17c110fbcf01
d648e330-796f-4c55-862d-c0ce65fff738
76619ed3-b345-4003-a812-02e580d1ec42
ed6a73a6-ab4c-4b6e-ac2a-ec6b5c7c040b
638761a9-96c1-4b36-86ad-ee28c48a73d9
e37af8b8-3d08-474c-b996-ee17aaf6b3a8
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Bioquímica
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Biblioteca Digital de Teses e Dissertações do UFSM
collection Biblioteca Digital de Teses e Dissertações do UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/18976/1/TES_PPGBT_2017_SCHOTT_KAREN.pdf
http://repositorio.ufsm.br/bitstream/1/18976/2/license_rdf
http://repositorio.ufsm.br/bitstream/1/18976/3/license.txt
http://repositorio.ufsm.br/bitstream/1/18976/4/TES_PPGBT_2017_SCHOTT_KAREN.pdf.txt
http://repositorio.ufsm.br/bitstream/1/18976/5/TES_PPGBT_2017_SCHOTT_KAREN.pdf.jpg
bitstream.checksum.fl_str_mv 954f0339aa25116e23128c5f59be695b
4460e5956bc1d1639be9ae6146a50347
2f0571ecee68693bd5cd3f17c1e075df
7edd2a68b0f9b805ad7df088e91e1b34
29a6fa8a17c7ac57a2dba812ef75aca1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1793240021879226368