Produção de hidrogênio a partir da fermentação anaeróbia de hidrolisados de resíduos agroindustriais

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Soares, Juliana Ferreira lattes
Orientador(a): Mazutti, Marcio Antonio lattes
Banca de defesa: Zabot, Giovani Leone lattes, Díaz, Helmut Joél Navarro lattes, Treichel, Helen lattes, Salazar, Rodrigo Fernando dos Santos lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Centro de Ciências Rurais
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Agrícola
Departamento: Engenharia Agrícola
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufsm.br/handle/1/16492
Resumo: Considering the increasing global demand for energy, the reduction of nonrenewable energy resources and concern for the environmental quality, hydrogen (H2) emerges as a clean, renewable and promising alternative, since its combustion results only in water and energy. Among the biological methods for H2 production, anaerobic fermentation is considered the most viable technology, since it does not require an external source of energy and several types of biomass can be used as carbon source by the microorganisms. Therefore, the aim of this work was to select an agroindustrial residue and to evaluate the production of H2 from anaerobic fermentation of its hydrolysate under different experimental conditions. The raw materials used were rice husk (CA), rice bran (FA), brewers’ spent grain (BC), soybean waste (RS) and wheat waste (RT). All materials were characterized, prepared and submitted to the acid hydrolysis process for the carbohydrate’s conversion into fermentable sugars under different conditions of temperature (104.4-127.0°C), time (20-60 min), acid concentration (5-15% H3PO4), and moisture (60-90%). The best experimental condition and the raw material to be used for H2 production were selected by total reducing sugars (ART) of obtained hydrolysates. Selected hydrolysate was then used as a source of substrate in the anaerobic fermentation process for H2 production, using anaerobic sludge as inoculum. Fermentation tests were conducted according to the factorial experimental design, evaluating the effect of temperature (35- 45°C), initial pH (5.5-7.5) and inoculum ratio (10-30%) in H2 production and maximum H2 production rate. All experiments were monitored for 20 h. The composition of the medium was analyzed before and after each assay in terms of sugars, inhibitors, and acetic acid. The final pH of each experiment was also determined. The experimental condition of acid hydrolysis that resulted in the highest concentration of ART in the hydrolysates of rice husk and rice bran was assay 3 (127°C, 60 min, 15% (w/w) H3PO4 and 60% moisture). In this condition, the concentration of ART was 118.16 g kg CA -1 and 170.38 g kg FA -1. On the other hand, the assay 1 (127°C, 20 min, 5% (w/w) H3PO4 and 90% moisture) resulted in higher ART concentration in brewers’ spent grain, soybean waste and wheat waste hydrolysates. The concentration of ART was 600.97 g kg BC -1, 80.37 g kg RS -1 and 228.04 g kg RT -1. From the results of hydrolysis, brewers’ spent grain was the raw material chosen for the H2 production process, as it resulted in the highest ART concentration. In addition, the BC will be available in large quantity during all over the year. The highest H2 yield (4160 mL L-1) and maximum H2 production rate (760 mL L-1 h-1) were found in assays 7 (35°C, pH 7.5 and 30% inoculum) and 8 (45°C, pH 7.5 and 30% inoculum), respectively. In some assays, glucose consumption of the BC hydrolysate reached 100%, while xylose was consumed up to 91.56%. The concentration of inhibitors (furfural and 5-HMF) before and after the fermentation process did not have significant alteration and did not show negative interference in H2 production. On the other hand, the concentration of acetic acid had an expressive increase from a range of 0.1392-0.3001 g L-1 to 1.1490- 5.8392 g L-1, which explains the drop in pH in the fermentation medium at the end of the tests. Finally, it was concluded that brewers’ spent grain hydrolysate presented appropriate characteristics for H2 production by anaerobic fermentation, leading to promising results when compared to the literature.
id UFSM_dd7492bfe7dfbc1a9e6007fc9712865c
oai_identifier_str oai:repositorio.ufsm.br:1/16492
network_acronym_str UFSM
network_name_str Biblioteca Digital de Teses e Dissertações do UFSM
repository_id_str
spelling 2019-05-08T22:25:47Z2019-05-08T22:25:47Z2019-02-19http://repositorio.ufsm.br/handle/1/16492Considering the increasing global demand for energy, the reduction of nonrenewable energy resources and concern for the environmental quality, hydrogen (H2) emerges as a clean, renewable and promising alternative, since its combustion results only in water and energy. Among the biological methods for H2 production, anaerobic fermentation is considered the most viable technology, since it does not require an external source of energy and several types of biomass can be used as carbon source by the microorganisms. Therefore, the aim of this work was to select an agroindustrial residue and to evaluate the production of H2 from anaerobic fermentation of its hydrolysate under different experimental conditions. The raw materials used were rice husk (CA), rice bran (FA), brewers’ spent grain (BC), soybean waste (RS) and wheat waste (RT). All materials were characterized, prepared and submitted to the acid hydrolysis process for the carbohydrate’s conversion into fermentable sugars under different conditions of temperature (104.4-127.0°C), time (20-60 min), acid concentration (5-15% H3PO4), and moisture (60-90%). The best experimental condition and the raw material to be used for H2 production were selected by total reducing sugars (ART) of obtained hydrolysates. Selected hydrolysate was then used as a source of substrate in the anaerobic fermentation process for H2 production, using anaerobic sludge as inoculum. Fermentation tests were conducted according to the factorial experimental design, evaluating the effect of temperature (35- 45°C), initial pH (5.5-7.5) and inoculum ratio (10-30%) in H2 production and maximum H2 production rate. All experiments were monitored for 20 h. The composition of the medium was analyzed before and after each assay in terms of sugars, inhibitors, and acetic acid. The final pH of each experiment was also determined. The experimental condition of acid hydrolysis that resulted in the highest concentration of ART in the hydrolysates of rice husk and rice bran was assay 3 (127°C, 60 min, 15% (w/w) H3PO4 and 60% moisture). In this condition, the concentration of ART was 118.16 g kg CA -1 and 170.38 g kg FA -1. On the other hand, the assay 1 (127°C, 20 min, 5% (w/w) H3PO4 and 90% moisture) resulted in higher ART concentration in brewers’ spent grain, soybean waste and wheat waste hydrolysates. The concentration of ART was 600.97 g kg BC -1, 80.37 g kg RS -1 and 228.04 g kg RT -1. From the results of hydrolysis, brewers’ spent grain was the raw material chosen for the H2 production process, as it resulted in the highest ART concentration. In addition, the BC will be available in large quantity during all over the year. The highest H2 yield (4160 mL L-1) and maximum H2 production rate (760 mL L-1 h-1) were found in assays 7 (35°C, pH 7.5 and 30% inoculum) and 8 (45°C, pH 7.5 and 30% inoculum), respectively. In some assays, glucose consumption of the BC hydrolysate reached 100%, while xylose was consumed up to 91.56%. The concentration of inhibitors (furfural and 5-HMF) before and after the fermentation process did not have significant alteration and did not show negative interference in H2 production. On the other hand, the concentration of acetic acid had an expressive increase from a range of 0.1392-0.3001 g L-1 to 1.1490- 5.8392 g L-1, which explains the drop in pH in the fermentation medium at the end of the tests. Finally, it was concluded that brewers’ spent grain hydrolysate presented appropriate characteristics for H2 production by anaerobic fermentation, leading to promising results when compared to the literature.Considerando a crescente demanda global por energia, a redução de recursos energéticos não renováveis e a preocupação com a qualidade do meio ambiente, o hidrogênio (H2) surge como uma alternativa limpa, renovável e promissora, uma vez que sua combustão resulta apenas em água e energia. Dentre os métodos biológicos de produção de H2, a fermentação anaeróbia é considerada a tecnologia mais viável, pois não necessita de fonte de energia externa e diversos tipos de biomassa podem ser utilizadas como fonte de carbono pelos microrganismos. Neste sentido, o objetivo deste trabalho foi selecionar um resíduo agroindustrial e avaliar a produção de H2 a partir da fermentação anaeróbia do seu hidrolisado sob diferentes condições experimentais. As matérias-primas utilizadas foram a casca (CA) e o farelo (FA) de arroz, o bagaço de cevada (BC) e os resíduos da limpeza da soja (RS) e do trigo (RT). Todos os materiais foram caracterizados, preparados e submetidos ao processo de hidrólise ácida para a conversão dos carboidratos em açúcares fermentescíveis em diferentes condições de temperatura (104,4-127,0°C), tempo (20-60 min), concentração de ácido (5-15% H3PO4) e umidade (60-90%). A seleção da melhor condição experimental e da matéria-prima a ser utilizada para produção de H2 foi realizada a partir do teor de açúcares redutores totais (ART) dos hidrolisados obtidos. O hidrolisado selecionado foi, então, utilizado como fonte de substrato no processo de fermentação anaeróbia para produção de H2, empregando-se lodo anaeróbio de frigorífico como inóculo. Os ensaios de fermentação foram conduzidos de acordo com o planejamento experimental fatorial, avaliando-se o efeito da temperatura (35-45°C), do pH inicial (5,5-7,5) e da proporção de inóculo (10-30%) na produção e na taxa máxima de produção de H2. Os experimentos foram monitorados por um período de 20 h. A composição do meio foi analisada antes e após cada ensaio, em termos de açúcares, inibidores e ácido acético. O pH final de cada experimento também foi determinado. A condição experimental de hidrólise ácida que resultou na maior concentração de ART nos hidrolisados da casca e do farelo de arroz foi o ensaio 3 (127°C, 60 min, 15% (m/m) de H3PO4 e 60% de umidade). Nessa condição, a concentração de ART foi em média de 118,16 g kg CA -1 e de 170,38 g kg FA -1. Por outro lado, o ensaio 1 (127°C, 20 min, 5% (m/m) de H3PO4 e 90% de umidade) foi o que resultou em maior concentração de ART nos hidrolisados do bagaço de cevada, do resíduo de soja e do resíduo de trigo. A concentração de ART foi em média de 600,97 g kg BC -1, 80,37 g kg RS -1 e 228,04 g kg RT -1. A partir dos resultados da hidrólise, o bagaço de cevada foi a matéria-prima escolhida para o processo de produção de H2, pois resultou na maior concentração de ART. Além disso, o BC encontra-se disponível em grande quantidade e em qualquer época do ano. A maior produção de H2 (4160 mL L-1) e a maior taxa máxima de produção de H2 (760 mL L-1 h-1) foram encontradas nos ensaios 7 (35°C, pH 7,5 e 30% de inóculo) e 8 (45°C, pH 7,5 e 30% de inóculo), respectivamente. Em alguns ensaios, o consumo da glicose do hidrolisado do BC chegou a 100%, enquanto que a xilose foi consumida em até 91,56%. A concentração de inibidores (furfural e 5-HMF) antes e após o processo fermentativo não teve alteração significativa, além disso não mostrou interferência negativa na produção de H2. Por outro lado, a concentração de ácido acético teve um aumento expressivo, de uma faixa de 0,1392-0,3001 g L-1 a 1,1490-5,8392 g L-1, o que explica a queda do pH no meio fermentativo ao final dos ensaios. Por fim, conclui-se que o hidrolisado do bagaço de cevada apresentou características apropriadas para produção de H2 via fermentação anaeróbia, levando a resultados promissores quando comparado à literatura.porUniversidade Federal de Santa MariaCentro de Ciências RuraisPrograma de Pós-Graduação em Engenharia AgrícolaUFSMBrasilEngenharia AgrícolaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessResíduos lignocelulósicosHidrólise ácidaBio-hidrogênioLignocellulosic wastesAcid hydrolysisBio-hydrogenCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAProdução de hidrogênio a partir da fermentação anaeróbia de hidrolisados de resíduos agroindustriaisHydrogen production from anaerobic fermentation of agricultural waste hydrolisatesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisMazutti, Marcio Antoniohttp://lattes.cnpq.br/3520282081196395Mayer, Flávio Diashttp://lattes.cnpq.br/4268416135140359Zabot, Giovani Leonehttp://lattes.cnpq.br/6573885187331634Díaz, Helmut Joél Navarrohttp://lattes.cnpq.br/8938531611537390Treichel, Helenhttp://lattes.cnpq.br/4786694107508722Salazar, Rodrigo Fernando dos Santoshttp://lattes.cnpq.br/9370462066771109http://lattes.cnpq.br/1147664349918340Soares, Juliana Ferreira5003000000086005007d7d5001-84cd-4e08-9476-4ab9b3d8e954639c4c48-ed91-4e87-8895-596986f8a5045eabddec-57d9-4865-a4d1-ee8f615c11715bef88bd-736e-468f-8291-0c3cbb4bb8d56ca30cea-5c1f-4036-a128-a850c6e94a7dd5ceb28a-a432-4534-bb33-1336b3dbf7abe4bbaeee-3ded-43e8-a9d1-c28e6cbf73cdreponame:Biblioteca Digital de Teses e Dissertações do UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALTES_PPGEA_2019_SOARES_JULIANA.pdfTES_PPGEA_2019_SOARES_JULIANA.pdfTese de Doutoradoapplication/pdf1457877http://repositorio.ufsm.br/bitstream/1/16492/1/TES_PPGEA_2019_SOARES_JULIANA.pdf88cc679d0858d47815fd1c440d742c9eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/16492/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81956http://repositorio.ufsm.br/bitstream/1/16492/3/license.txt2f0571ecee68693bd5cd3f17c1e075dfMD53TEXTTES_PPGEA_2019_SOARES_JULIANA.pdf.txtTES_PPGEA_2019_SOARES_JULIANA.pdf.txtExtracted texttext/plain214245http://repositorio.ufsm.br/bitstream/1/16492/4/TES_PPGEA_2019_SOARES_JULIANA.pdf.txtceddb7befb2734194c3e75956a748c81MD54THUMBNAILTES_PPGEA_2019_SOARES_JULIANA.pdf.jpgTES_PPGEA_2019_SOARES_JULIANA.pdf.jpgIM Thumbnailimage/jpeg4421http://repositorio.ufsm.br/bitstream/1/16492/5/TES_PPGEA_2019_SOARES_JULIANA.pdf.jpgab3d11b4c22bc886c60e0ad8a404126cMD551/164922022-06-03 13:51:54.301oai:repositorio.ufsm.br:1/16492TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU2FudGEgTWFyaWEgKFVGU00pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZQplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVGU00gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbwpwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUZTTSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU00Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZTTQosIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNNIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKQpkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcwpjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKBiblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-06-03T16:51:54Biblioteca Digital de Teses e Dissertações do UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Produção de hidrogênio a partir da fermentação anaeróbia de hidrolisados de resíduos agroindustriais
dc.title.alternative.eng.fl_str_mv Hydrogen production from anaerobic fermentation of agricultural waste hydrolisates
title Produção de hidrogênio a partir da fermentação anaeróbia de hidrolisados de resíduos agroindustriais
spellingShingle Produção de hidrogênio a partir da fermentação anaeróbia de hidrolisados de resíduos agroindustriais
Soares, Juliana Ferreira
Resíduos lignocelulósicos
Hidrólise ácida
Bio-hidrogênio
Lignocellulosic wastes
Acid hydrolysis
Bio-hydrogen
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Produção de hidrogênio a partir da fermentação anaeróbia de hidrolisados de resíduos agroindustriais
title_full Produção de hidrogênio a partir da fermentação anaeróbia de hidrolisados de resíduos agroindustriais
title_fullStr Produção de hidrogênio a partir da fermentação anaeróbia de hidrolisados de resíduos agroindustriais
title_full_unstemmed Produção de hidrogênio a partir da fermentação anaeróbia de hidrolisados de resíduos agroindustriais
title_sort Produção de hidrogênio a partir da fermentação anaeróbia de hidrolisados de resíduos agroindustriais
author Soares, Juliana Ferreira
author_facet Soares, Juliana Ferreira
author_role author
dc.contributor.advisor1.fl_str_mv Mazutti, Marcio Antonio
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3520282081196395
dc.contributor.advisor-co1.fl_str_mv Mayer, Flávio Dias
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4268416135140359
dc.contributor.referee1.fl_str_mv Zabot, Giovani Leone
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6573885187331634
dc.contributor.referee2.fl_str_mv Díaz, Helmut Joél Navarro
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/8938531611537390
dc.contributor.referee3.fl_str_mv Treichel, Helen
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4786694107508722
dc.contributor.referee4.fl_str_mv Salazar, Rodrigo Fernando dos Santos
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/9370462066771109
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1147664349918340
dc.contributor.author.fl_str_mv Soares, Juliana Ferreira
contributor_str_mv Mazutti, Marcio Antonio
Mayer, Flávio Dias
Zabot, Giovani Leone
Díaz, Helmut Joél Navarro
Treichel, Helen
Salazar, Rodrigo Fernando dos Santos
dc.subject.por.fl_str_mv Resíduos lignocelulósicos
Hidrólise ácida
Bio-hidrogênio
topic Resíduos lignocelulósicos
Hidrólise ácida
Bio-hidrogênio
Lignocellulosic wastes
Acid hydrolysis
Bio-hydrogen
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Lignocellulosic wastes
Acid hydrolysis
Bio-hydrogen
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description Considering the increasing global demand for energy, the reduction of nonrenewable energy resources and concern for the environmental quality, hydrogen (H2) emerges as a clean, renewable and promising alternative, since its combustion results only in water and energy. Among the biological methods for H2 production, anaerobic fermentation is considered the most viable technology, since it does not require an external source of energy and several types of biomass can be used as carbon source by the microorganisms. Therefore, the aim of this work was to select an agroindustrial residue and to evaluate the production of H2 from anaerobic fermentation of its hydrolysate under different experimental conditions. The raw materials used were rice husk (CA), rice bran (FA), brewers’ spent grain (BC), soybean waste (RS) and wheat waste (RT). All materials were characterized, prepared and submitted to the acid hydrolysis process for the carbohydrate’s conversion into fermentable sugars under different conditions of temperature (104.4-127.0°C), time (20-60 min), acid concentration (5-15% H3PO4), and moisture (60-90%). The best experimental condition and the raw material to be used for H2 production were selected by total reducing sugars (ART) of obtained hydrolysates. Selected hydrolysate was then used as a source of substrate in the anaerobic fermentation process for H2 production, using anaerobic sludge as inoculum. Fermentation tests were conducted according to the factorial experimental design, evaluating the effect of temperature (35- 45°C), initial pH (5.5-7.5) and inoculum ratio (10-30%) in H2 production and maximum H2 production rate. All experiments were monitored for 20 h. The composition of the medium was analyzed before and after each assay in terms of sugars, inhibitors, and acetic acid. The final pH of each experiment was also determined. The experimental condition of acid hydrolysis that resulted in the highest concentration of ART in the hydrolysates of rice husk and rice bran was assay 3 (127°C, 60 min, 15% (w/w) H3PO4 and 60% moisture). In this condition, the concentration of ART was 118.16 g kg CA -1 and 170.38 g kg FA -1. On the other hand, the assay 1 (127°C, 20 min, 5% (w/w) H3PO4 and 90% moisture) resulted in higher ART concentration in brewers’ spent grain, soybean waste and wheat waste hydrolysates. The concentration of ART was 600.97 g kg BC -1, 80.37 g kg RS -1 and 228.04 g kg RT -1. From the results of hydrolysis, brewers’ spent grain was the raw material chosen for the H2 production process, as it resulted in the highest ART concentration. In addition, the BC will be available in large quantity during all over the year. The highest H2 yield (4160 mL L-1) and maximum H2 production rate (760 mL L-1 h-1) were found in assays 7 (35°C, pH 7.5 and 30% inoculum) and 8 (45°C, pH 7.5 and 30% inoculum), respectively. In some assays, glucose consumption of the BC hydrolysate reached 100%, while xylose was consumed up to 91.56%. The concentration of inhibitors (furfural and 5-HMF) before and after the fermentation process did not have significant alteration and did not show negative interference in H2 production. On the other hand, the concentration of acetic acid had an expressive increase from a range of 0.1392-0.3001 g L-1 to 1.1490- 5.8392 g L-1, which explains the drop in pH in the fermentation medium at the end of the tests. Finally, it was concluded that brewers’ spent grain hydrolysate presented appropriate characteristics for H2 production by anaerobic fermentation, leading to promising results when compared to the literature.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-05-08T22:25:47Z
dc.date.available.fl_str_mv 2019-05-08T22:25:47Z
dc.date.issued.fl_str_mv 2019-02-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/16492
url http://repositorio.ufsm.br/handle/1/16492
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 500300000008
dc.relation.confidence.fl_str_mv 600
500
dc.relation.authority.fl_str_mv 7d7d5001-84cd-4e08-9476-4ab9b3d8e954
639c4c48-ed91-4e87-8895-596986f8a504
5eabddec-57d9-4865-a4d1-ee8f615c1171
5bef88bd-736e-468f-8291-0c3cbb4bb8d5
6ca30cea-5c1f-4036-a128-a850c6e94a7d
d5ceb28a-a432-4534-bb33-1336b3dbf7ab
e4bbaeee-3ded-43e8-a9d1-c28e6cbf73cd
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Rurais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Engenharia Agrícola
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Biblioteca Digital de Teses e Dissertações do UFSM
collection Biblioteca Digital de Teses e Dissertações do UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/16492/1/TES_PPGEA_2019_SOARES_JULIANA.pdf
http://repositorio.ufsm.br/bitstream/1/16492/2/license_rdf
http://repositorio.ufsm.br/bitstream/1/16492/3/license.txt
http://repositorio.ufsm.br/bitstream/1/16492/4/TES_PPGEA_2019_SOARES_JULIANA.pdf.txt
http://repositorio.ufsm.br/bitstream/1/16492/5/TES_PPGEA_2019_SOARES_JULIANA.pdf.jpg
bitstream.checksum.fl_str_mv 88cc679d0858d47815fd1c440d742c9e
4460e5956bc1d1639be9ae6146a50347
2f0571ecee68693bd5cd3f17c1e075df
ceddb7befb2734194c3e75956a748c81
ab3d11b4c22bc886c60e0ad8a404126c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1793240127717244928