Photocatalytic applications of layered niobates and their composites

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Nunes, Barbara Nascimento lattes
Orientador(a): Patrocinio, Antonio Otavio de Toledo lattes, Bahnemann, Detlef
Banca de defesa: Beutel, Sascha lattes, Wark, Michael lattes, Feldhoff, Armin lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Uberlândia
Programa de Pós-Graduação: Programa de Pós-graduação em Química
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufu.br/handle/123456789/34943
http://doi.org/10.14393/ufu.te.2022.217
Resumo: Photocatalytic applications of two-dimensional (2D) materials have called great interest due to several electronic and structural advantages. Among these materials, layered niobates are well-known photocatalysts for H2 evolution with a rich surface chemistry. Taking into account the highly exposed active sites of its 2D structure and the morphological flexibility, the properties of the exfoliated hexaniobate as a heterogeneous photocatalyst has been explored in this work, with particular attention to the electronic and interfacial processes involved in the H2 evolution. Firstly, highly efficient photocatalytic surfaces were obtained through the layer-by-layer (LbL) deposition of hexaniobate nanoscrolls on conductive glasses. These films were deposited by using poly(allylamine hydrochloride) as a polyelectrolyte and further thermal treatment leading to films composed of a fuzzy assembly of hexaniobate nanoscrolls. This configuration favored the diffusion of water and methanol molecules thus facilitating an efficient H2 evolution. Moreover, pre-adsorption of [Pt(NH3)4]2+ cations on the niobate layers allowed the production of metallic Pt nanoclusters within the nanoscrolls. The Pt-modified films exhibited apparent quantum yields of (4.0 ± 0.5) % for H2 evolution from water/methanol mixtures under UV-A irradiation. Then, in order to induce novel electronic processes without changing the bulk properties of the hexaniobate, surface modification was performed by grafting with metallic nanoclusters. Exfoliated hexaniobate (K4−xHxNb6O17) composites with metal ions such as Co2+, Fe3+ and Cu2+ were prepared and their photocatalytic properties were fully investigated. Morphological characterization showed that the grafting ions are attached to the hexaniobate surface forming amorphous clusters. These species induce an additional absorption feature in the UV-A region, which is attributed to an interfacial charge transfer from the niobate valence band to the metal ion centers. In the case of Co2+ and Fe3+, enhanced UV-driven photoactivity in plain water was observed for 0.1 wt.% grafted samples, especially for those modified with Co2+ ions, while smaller H2 evolution rates are observed as the concentration of the grafting ions increased. When Pt was added to the photocatalyst, the H2 evolution rate for the 0.1% Co-grafted sample in plain water was 70% higher than that observed for the nongrafted Pt-hexaniobate. For Cu2+-grafted hexaniobates, Cu2+ clusters provided an expressive improvement in the photocatalytic H2 evolution under UV-vis irradiation from methanolic aqueous solution and promising results for partial water splitting, in comparison to the hexaniobate with photodeposited Pt. These species on the hexaniobate surface present a high redox reversibility, being easily reduced to Cu1+/Cu0 and reoxidized to Cu2+. Cu2+ ions work as electron scavenger following band gap excitation while the resulting reduced species act as active sites to produce H2. Thus, the presence of different ions at different concentrations can directly affect the fate of the photogenerated carriers thus triggering the photocatalytic activity in different ways. Overall, the grafted ions contribute to a more efficient charge separation and to higher photocatalytic performances.
id UFU_eb61c58368574c2aab7a5b4414a70d84
oai_identifier_str oai:repositorio.ufu.br:123456789/34943
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling 2022-04-28T14:47:00Z2022-04-28T14:47:00Z2022-04-12NUNES, Barbara Nascimento. Photocatalytic applications of layered niobates and their composites. 2022. 204 f. Tese (Doutorado em Química) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.217https://repositorio.ufu.br/handle/123456789/34943http://doi.org/10.14393/ufu.te.2022.217Photocatalytic applications of two-dimensional (2D) materials have called great interest due to several electronic and structural advantages. Among these materials, layered niobates are well-known photocatalysts for H2 evolution with a rich surface chemistry. Taking into account the highly exposed active sites of its 2D structure and the morphological flexibility, the properties of the exfoliated hexaniobate as a heterogeneous photocatalyst has been explored in this work, with particular attention to the electronic and interfacial processes involved in the H2 evolution. Firstly, highly efficient photocatalytic surfaces were obtained through the layer-by-layer (LbL) deposition of hexaniobate nanoscrolls on conductive glasses. These films were deposited by using poly(allylamine hydrochloride) as a polyelectrolyte and further thermal treatment leading to films composed of a fuzzy assembly of hexaniobate nanoscrolls. This configuration favored the diffusion of water and methanol molecules thus facilitating an efficient H2 evolution. Moreover, pre-adsorption of [Pt(NH3)4]2+ cations on the niobate layers allowed the production of metallic Pt nanoclusters within the nanoscrolls. The Pt-modified films exhibited apparent quantum yields of (4.0 ± 0.5) % for H2 evolution from water/methanol mixtures under UV-A irradiation. Then, in order to induce novel electronic processes without changing the bulk properties of the hexaniobate, surface modification was performed by grafting with metallic nanoclusters. Exfoliated hexaniobate (K4−xHxNb6O17) composites with metal ions such as Co2+, Fe3+ and Cu2+ were prepared and their photocatalytic properties were fully investigated. Morphological characterization showed that the grafting ions are attached to the hexaniobate surface forming amorphous clusters. These species induce an additional absorption feature in the UV-A region, which is attributed to an interfacial charge transfer from the niobate valence band to the metal ion centers. In the case of Co2+ and Fe3+, enhanced UV-driven photoactivity in plain water was observed for 0.1 wt.% grafted samples, especially for those modified with Co2+ ions, while smaller H2 evolution rates are observed as the concentration of the grafting ions increased. When Pt was added to the photocatalyst, the H2 evolution rate for the 0.1% Co-grafted sample in plain water was 70% higher than that observed for the nongrafted Pt-hexaniobate. For Cu2+-grafted hexaniobates, Cu2+ clusters provided an expressive improvement in the photocatalytic H2 evolution under UV-vis irradiation from methanolic aqueous solution and promising results for partial water splitting, in comparison to the hexaniobate with photodeposited Pt. These species on the hexaniobate surface present a high redox reversibility, being easily reduced to Cu1+/Cu0 and reoxidized to Cu2+. Cu2+ ions work as electron scavenger following band gap excitation while the resulting reduced species act as active sites to produce H2. Thus, the presence of different ions at different concentrations can directly affect the fate of the photogenerated carriers thus triggering the photocatalytic activity in different ways. Overall, the grafted ions contribute to a more efficient charge separation and to higher photocatalytic performances.Aplicações fotocatalíticas de materiais bidimensionais (2D) têm despertado grande interesse devido às diversas vantagens eletrônicas e estruturais desses materiais. Dentre eles, os niobatos lamelares são fotocatalisadores bem conhecidos para a evolução de H2 com uma rica química de superfície. Levando em consideração os sítios ativos altamente expostos de sua estrutura 2D e sua flexibilidade morfológica, as propriedades do hexaniobato esfoliado como fotocatalisador heterogêneo foram exploradas neste trabalho, com particular atenção aos processos eletrônicos e interfaciais envolvidos na evolução de H2. Primeiramente, superfícies fotocatalíticas de alta eficiência foram obtidas através da deposição camada por camada (LbL) de nanoscrolls de hexaniobato em vidros condutores. Esses filmes foram depositados usando poli(cloridrato de alilamina) como polieletrólito, e o posterior tratamento térmico resultou em filmes compostos por uma montagem difusa de nanoscrolls de hexaniobato. Esta configuração favoreceu a difusão das moléculas de água e metanol, facilitando uma evolução eficiente de H2. Além disso, a pré-adsorção de cátions [Pt(NH3)4]2+ nas camadas de niobato permitiu a produção de nanoaglomerados metálicos de Pt nos nanoscrolls. Os filmes modificados com Pt exibiram rendimentos quânticos aparentes de (4,0 ± 0,5)% para a evolução de H2 a partir de misturas de água / metanol sob irraditação UV-A. Em seguência, a fim de induzir novos processos eletrônicos sem alterar as propriedades do hexaniobato, a modificação da superfície foi realizada por grafting com nanoclusters metálicos. Compósitos de hexaniobato esfoliado (K4−xHxNb6O17) com íons metálicos como Co2+, Fe3+ e Cu2+ foram preparados e suas propriedades fotocatalíticas foram extensivamente investigadas. A caracterização morfológica mostrou que os íons adicionados por grafting estão fixados na superfície do hexaniobato formando aglomerados amorfos. Essas espécies induzem uma de absorção adicional característica na região UV-A, que é atribuída a uma transferência de carga interfacial da banda de valência do niobato para os centros de íons metálicos. No caso de Co2+ e Fe3+, a melhor fotoatividade conduzida por UV em água pura foi observada para amostras modificadas a 0,1%, especialmente para aquelas com íons Co2+, enquanto menores taxas de evolução de H2 são observadas conforme a concentração dos íons de grafting aumenta. Quando a Pt foi adicionada ao fotocatalisador, a taxa de evolução de H2 para a amostra modificada a 0,1% em água pura foi 70% maior do que a observada para o Pt-hexaniobato não modificado por grafting. Para hexaniobatos com Cu2+, os clusters de Cu2+ proporcionaram expressiva melhora na evolução fotocatalítica de H2 sob irradiação UV-vis de uma solução aquosa metanólica e resultados promissores para a quebra parcial da água, em comparação ao hexaniobato com Pt fotodepositada. Essas espécies na superfície do hexaniobato apresentam alta reversibilidade redox, que pode ser facilmente reduzida para Cu1+/Cu0 e reoxidada para Cu2+. Os íons Cu2+ funcionam como eliminadores de elétrons após a excitação do bandgap e as espécies reduzidas resultantes atuam como sítio ativo para produzir H2. Assim, a presença de diferentes íons em diferentes concentrações pode afetar diretamente o destino dos portadores fotogerados, desencadeando a atividade fotocatalítica de diferentes maneiras. Os íons adicionados por grafting contribuem para uma separação de carga mais eficiente e desempenhos fotocatalíticos mais elevados.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorTese (Doutorado)engUniversidade Federal de UberlândiaPrograma de Pós-graduação em QuímicaBrasilCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA INORGANICA::FOTO-QUIMICA INORGANICAQuímicaCompostos de nióbioÁgua - AnáliseFilmes finos - Propriedades ópticas2D materialsniobium oxideniobatesthin filmsphotoactive surfacephotocatalysishydrogenwater splittingMateriais 2Dóxido de nióbioniobatosfilmes finosfotoativos Superfíciefotocatálisehidrogênioseparação de águaestudos mecanísticosPhotocatalytic applications of layered niobates and their compositesAplicações fotocatalíticas de niobatos lamelares e seus compósitosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPatrocinio, Antonio Otavio de Toledohttp://lattes.cnpq.br/0176020585396338Bahnemann, DetlefBeutel, Saschahttps://www.tci.uni-hannover.de/de/sascha-beutel/Wark, Michaelhttps://uol.de/chemie/prof-dr-michael-warkFeldhoff, Arminhttps://scholar.google.com/citations?user=zyysiuUAAAAJ&hl=dehttp://lattes.cnpq.br/3626047156612933Nunes, Barbara Nascimento2041122500322bb86f18-5c59-4ae8-913a-3cf8e0b8f128info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFULICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.ufu.br/bitstream/123456789/34943/2/license.txt48ded82ce41b8d2426af12aed6b3cbf3MD52TEXTPhotocatalyticApplicationsLayered.pdf.txtPhotocatalyticApplicationsLayered.pdf.txtExtracted texttext/plain380345https://repositorio.ufu.br/bitstream/123456789/34943/3/PhotocatalyticApplicationsLayered.pdf.txt59dad23b41ec0c9e7c36c44f89f616c3MD53THUMBNAILPhotocatalyticApplicationsLayered.pdf.jpgPhotocatalyticApplicationsLayered.pdf.jpgGenerated Thumbnailimage/jpeg1355https://repositorio.ufu.br/bitstream/123456789/34943/4/PhotocatalyticApplicationsLayered.pdf.jpga7c2a3e400b5c961433276ffa5b53bfeMD54ORIGINALPhotocatalyticApplicationsLayered.pdfPhotocatalyticApplicationsLayered.pdfTeseapplication/pdf13965966https://repositorio.ufu.br/bitstream/123456789/34943/5/PhotocatalyticApplicationsLayered.pdfbc59b31780bc0cd72ef1184f43b6e35dMD55123456789/349432022-05-25 09:56:19.723oai:repositorio.ufu.br:123456789/34943w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLCBhbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYSBsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0gY29udGF0byBhdHJhdsOpcyBkbyBlLW1haWwgIHJlcG9zaXRvcmlvQHVmdS5ici4KCkxJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpBbyBhc3NpbmFyIGUgZW50cmVnYXIgZXN0YSBsaWNlbsOnYSwgby9hIFNyLi9TcmEuIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpOgoKYSkgQ29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBVYmVybMOibmRpYSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGFiYWl4byksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIgbyBkb2N1bWVudG8gZW50cmVndWUgKGluY2x1aW5kbyBvIHJlc3Vtby9hYnN0cmFjdCkgZW0gZm9ybWF0byBkaWdpdGFsIG91IGltcHJlc3NvIGUgZW0gcXVhbHF1ZXIgbWVpby4KCmIpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50byBsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuCgpjKSBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSBjb250w6ltIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBwYXJhIGNvbmNlZGVyIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFViZXJsw6JuZGlhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBVYmVybMOibmRpYSwgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFViZXJsw6JuZGlhIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBvKHMpIHNldShzKSBub21lKHMpIGNvbW8gbyhzKSBhdXRvcihlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2022-05-25T12:56:19Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.pt_BR.fl_str_mv Photocatalytic applications of layered niobates and their composites
dc.title.alternative.pt_BR.fl_str_mv Aplicações fotocatalíticas de niobatos lamelares e seus compósitos
title Photocatalytic applications of layered niobates and their composites
spellingShingle Photocatalytic applications of layered niobates and their composites
Nunes, Barbara Nascimento
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA INORGANICA::FOTO-QUIMICA INORGANICA
2D materials
niobium oxide
niobates
thin films
photoactive surface
photocatalysis
hydrogen
water splitting
Materiais 2D
óxido de nióbio
niobatos
filmes finos
fotoativos Superfície
fotocatálise
hidrogênio
separação de água
estudos mecanísticos
Química
Compostos de nióbio
Água - Análise
Filmes finos - Propriedades ópticas
title_short Photocatalytic applications of layered niobates and their composites
title_full Photocatalytic applications of layered niobates and their composites
title_fullStr Photocatalytic applications of layered niobates and their composites
title_full_unstemmed Photocatalytic applications of layered niobates and their composites
title_sort Photocatalytic applications of layered niobates and their composites
author Nunes, Barbara Nascimento
author_facet Nunes, Barbara Nascimento
author_role author
dc.contributor.advisor1.fl_str_mv Patrocinio, Antonio Otavio de Toledo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0176020585396338
dc.contributor.advisor2.fl_str_mv Bahnemann, Detlef
dc.contributor.referee1.fl_str_mv Beutel, Sascha
dc.contributor.referee1Lattes.fl_str_mv https://www.tci.uni-hannover.de/de/sascha-beutel/
dc.contributor.referee2.fl_str_mv Wark, Michael
dc.contributor.referee2Lattes.fl_str_mv https://uol.de/chemie/prof-dr-michael-wark
dc.contributor.referee3.fl_str_mv Feldhoff, Armin
dc.contributor.referee3Lattes.fl_str_mv https://scholar.google.com/citations?user=zyysiuUAAAAJ&hl=de
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3626047156612933
dc.contributor.author.fl_str_mv Nunes, Barbara Nascimento
contributor_str_mv Patrocinio, Antonio Otavio de Toledo
Bahnemann, Detlef
Beutel, Sascha
Wark, Michael
Feldhoff, Armin
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA INORGANICA::FOTO-QUIMICA INORGANICA
topic CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA INORGANICA::FOTO-QUIMICA INORGANICA
2D materials
niobium oxide
niobates
thin films
photoactive surface
photocatalysis
hydrogen
water splitting
Materiais 2D
óxido de nióbio
niobatos
filmes finos
fotoativos Superfície
fotocatálise
hidrogênio
separação de água
estudos mecanísticos
Química
Compostos de nióbio
Água - Análise
Filmes finos - Propriedades ópticas
dc.subject.por.fl_str_mv 2D materials
niobium oxide
niobates
thin films
photoactive surface
photocatalysis
hydrogen
water splitting
Materiais 2D
óxido de nióbio
niobatos
filmes finos
fotoativos Superfície
fotocatálise
hidrogênio
separação de água
estudos mecanísticos
dc.subject.autorizado.pt_BR.fl_str_mv Química
Compostos de nióbio
Água - Análise
Filmes finos - Propriedades ópticas
description Photocatalytic applications of two-dimensional (2D) materials have called great interest due to several electronic and structural advantages. Among these materials, layered niobates are well-known photocatalysts for H2 evolution with a rich surface chemistry. Taking into account the highly exposed active sites of its 2D structure and the morphological flexibility, the properties of the exfoliated hexaniobate as a heterogeneous photocatalyst has been explored in this work, with particular attention to the electronic and interfacial processes involved in the H2 evolution. Firstly, highly efficient photocatalytic surfaces were obtained through the layer-by-layer (LbL) deposition of hexaniobate nanoscrolls on conductive glasses. These films were deposited by using poly(allylamine hydrochloride) as a polyelectrolyte and further thermal treatment leading to films composed of a fuzzy assembly of hexaniobate nanoscrolls. This configuration favored the diffusion of water and methanol molecules thus facilitating an efficient H2 evolution. Moreover, pre-adsorption of [Pt(NH3)4]2+ cations on the niobate layers allowed the production of metallic Pt nanoclusters within the nanoscrolls. The Pt-modified films exhibited apparent quantum yields of (4.0 ± 0.5) % for H2 evolution from water/methanol mixtures under UV-A irradiation. Then, in order to induce novel electronic processes without changing the bulk properties of the hexaniobate, surface modification was performed by grafting with metallic nanoclusters. Exfoliated hexaniobate (K4−xHxNb6O17) composites with metal ions such as Co2+, Fe3+ and Cu2+ were prepared and their photocatalytic properties were fully investigated. Morphological characterization showed that the grafting ions are attached to the hexaniobate surface forming amorphous clusters. These species induce an additional absorption feature in the UV-A region, which is attributed to an interfacial charge transfer from the niobate valence band to the metal ion centers. In the case of Co2+ and Fe3+, enhanced UV-driven photoactivity in plain water was observed for 0.1 wt.% grafted samples, especially for those modified with Co2+ ions, while smaller H2 evolution rates are observed as the concentration of the grafting ions increased. When Pt was added to the photocatalyst, the H2 evolution rate for the 0.1% Co-grafted sample in plain water was 70% higher than that observed for the nongrafted Pt-hexaniobate. For Cu2+-grafted hexaniobates, Cu2+ clusters provided an expressive improvement in the photocatalytic H2 evolution under UV-vis irradiation from methanolic aqueous solution and promising results for partial water splitting, in comparison to the hexaniobate with photodeposited Pt. These species on the hexaniobate surface present a high redox reversibility, being easily reduced to Cu1+/Cu0 and reoxidized to Cu2+. Cu2+ ions work as electron scavenger following band gap excitation while the resulting reduced species act as active sites to produce H2. Thus, the presence of different ions at different concentrations can directly affect the fate of the photogenerated carriers thus triggering the photocatalytic activity in different ways. Overall, the grafted ions contribute to a more efficient charge separation and to higher photocatalytic performances.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-04-28T14:47:00Z
dc.date.available.fl_str_mv 2022-04-28T14:47:00Z
dc.date.issued.fl_str_mv 2022-04-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NUNES, Barbara Nascimento. Photocatalytic applications of layered niobates and their composites. 2022. 204 f. Tese (Doutorado em Química) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.217
dc.identifier.uri.fl_str_mv https://repositorio.ufu.br/handle/123456789/34943
dc.identifier.doi.pt_BR.fl_str_mv http://doi.org/10.14393/ufu.te.2022.217
identifier_str_mv NUNES, Barbara Nascimento. Photocatalytic applications of layered niobates and their composites. 2022. 204 f. Tese (Doutorado em Química) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.217
url https://repositorio.ufu.br/handle/123456789/34943
http://doi.org/10.14393/ufu.te.2022.217
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Química
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Uberlândia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
bitstream.url.fl_str_mv https://repositorio.ufu.br/bitstream/123456789/34943/2/license.txt
https://repositorio.ufu.br/bitstream/123456789/34943/3/PhotocatalyticApplicationsLayered.pdf.txt
https://repositorio.ufu.br/bitstream/123456789/34943/4/PhotocatalyticApplicationsLayered.pdf.jpg
https://repositorio.ufu.br/bitstream/123456789/34943/5/PhotocatalyticApplicationsLayered.pdf
bitstream.checksum.fl_str_mv 48ded82ce41b8d2426af12aed6b3cbf3
59dad23b41ec0c9e7c36c44f89f616c3
a7c2a3e400b5c961433276ffa5b53bfe
bc59b31780bc0cd72ef1184f43b6e35d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1792331494592610304