Sistemas de defesa antioxidativo contra a toxicidade induzida por arsênio em aguapé (Eichhornia crassipes (Mart.) Solms)

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Reis, Iulla Naiff Rabelo de Souza
Orientador(a): Oliveira, Juraci Alves de lattes
Banca de defesa: Cambraia, José lattes, Mello, Jaime Wilson Vargas de lattes, Ribeiro, Sylvia Therese Meyer lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Doutorado em Fisiologia Vegetal
Departamento: Controle da maturação e senescência em órgãos perecíveis; Fisiologia molecular de plantas superiores
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://locus.ufv.br/handle/123456789/984
Resumo: Water hyacinth (Eichhornia crassipes (Mart.) Solms) was subjected to toxic concentrations of arsenic (As) to analyze the absorption capacity of this metalloid by this macrophyte and its toxic effects on growth and structural changes in leaves and roots, as well as studies of biochemical mechanisms related to metabolism and glutathione antioxidant involved in tolerance to As. In the first experiment, plants were grown in nutrient solution containing 0; 3; 7; 10 e 13 μM As, in the form of sodium arsenate for three days. In this period, there were symptoms of toxicity that changed according to the concentration of this metalloid in the nutrient solution. The As contents in roots increased with increasing concentration of As in the nutrient solution up to 9 μM, while in leaves the levels of this element increased linearly with As concentration. When treated with 3 μM As, the plants were able removing 97% of this element from the solution and, although there was reduction in removal efficiency at higher concentrations, it appears that even under 13 μM the plants were able to remove over 50% of this element, accumulating large amounts of As. The values of bioconcentration factor (BCF) were lower than 500, while the values of transfer factor (TF) in plants exposed to levels greater than 7 μM As, were greater than 1. This indicates that, as it increases the absorption of As by E. crassipes, there is increased translocation of this element to the shoot. The lower levels of chlorophyll and carotenoids found in E. crassipes probably compromised its photosynthetic capacity, justifying the reduction in relative growth rate of plants exposed to higher concentrations of As. Moreover, there was increase of anthocyanin content with increasing concentrations of As. In plants exposed to moderate concentrations of As, there was reduction in the levels of hydrogen peroxide (H2O2), indicating the efficient action of the enzymes involved in combating oxidative stress. The treatment with As increased the activity of superoxide dismutase (SOD) in leaves, up to 8 μM, which may represent part of a defense mechanism to oxidative stress caused by this element. The increase in activity of catalase (CAT) and a reduction in the levels of H2O2, in the roots of plants exposed to 6 μM of As, suggest that this enzyme operates effectively in the removal of this compound in this organ. As exposure inhibited the activity of peroxidase (POXs) in roots, however, leaves showed greater stimulation of enzyme activity. Thus, probably the reduction in levels of H2O2, observed in roots was due to the action of CAT, while POXs seem to have been responsible for the efficient removal of H2O2 in leaves. The activity of ascorbate peroxidase (APX) was stimulated in the presence of moderate concentrations of As in leaves, indicating that this enzyme should efficiently contribute to the removal of H2O2 produced in this organ. In the second experiment, plants were grown in nutrient solution containing or not 7 μM As. As exposure increased the activity of ATP sulfurylase (ATPS) in the roots, but did not alter the enzyme activity in leaves. On the other hand, As reduced activity of glutathione peroxidase (GSH-Px) and increased the activity of glutathione reductase (GR) both in leaves and roots. The glutathione sulfotransferase (GST) operates more effectively in the roots, where there was an increase in activity of this enzyme, indicating GSH conjugation to metalloid in these organs. The As treatment did not affect the activity of γ-glutamylcysteine synthetase (γ-ECS) in the roots, but stimulated the action of this enzyme in leaves. Furthermore, there was a significant reduction in total glutathione contents and increase of total thiols and non-protein thiols contents, which suggests a higher phytochelatin synthesis. The anatomical analysis revealed significant damage only in the apical region of the leaves, where initiate the toxic symptoms to As. Thus, the increase in activity of enzymes involved in glutathione metabolism is an important mechanism for tolerance and accumulation of As in E. crassipes. It appears that E. crassipes has a high absorption efficiency of As, and in concentrations up to 7 μM As, this plant has an increased activity of antioxidant enzymes contributing to the removal of excess reactive oxygen species arising from the toxicity of this element. Furthermore, the increased activity of enzymes involved in glutathione metabolism may represent an important mechanism for tolerance and accumulation of As in E. crassipes.
id UFV_2f6cab3cbcdea65c2876978f729be350
oai_identifier_str oai:locus.ufv.br:123456789/984
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str
spelling Reis, Iulla Naiff Rabelo de Souzahttp://lattes.cnpq.br/8106163075243327Ventrella, Marília Continhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763436A2Otoni, Wagner Camposhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786133Y6Oliveira, Juraci Alves dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782512D8Cambraia, Joséhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783868U6Mello, Jaime Wilson Vargas dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4789445D2Ribeiro, Sylvia Therese Meyerhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4780180A02015-03-26T12:40:41Z2012-03-162015-03-26T12:40:41Z2011-03-25REIS, Iulla Naiff Rabelo de Souza. Antioxidative defense systems against toxicity induced by arsenic in water hyacinth (Eichhornia crassipes (Mart.) Solms). 2011. 91 f. Tese (Doutorado em Controle da maturação e senescência em órgãos perecíveis; Fisiologia molecular de plantas superiores) - Universidade Federal de Viçosa, Viçosa, 2011.http://locus.ufv.br/handle/123456789/984Water hyacinth (Eichhornia crassipes (Mart.) Solms) was subjected to toxic concentrations of arsenic (As) to analyze the absorption capacity of this metalloid by this macrophyte and its toxic effects on growth and structural changes in leaves and roots, as well as studies of biochemical mechanisms related to metabolism and glutathione antioxidant involved in tolerance to As. In the first experiment, plants were grown in nutrient solution containing 0; 3; 7; 10 e 13 μM As, in the form of sodium arsenate for three days. In this period, there were symptoms of toxicity that changed according to the concentration of this metalloid in the nutrient solution. The As contents in roots increased with increasing concentration of As in the nutrient solution up to 9 μM, while in leaves the levels of this element increased linearly with As concentration. When treated with 3 μM As, the plants were able removing 97% of this element from the solution and, although there was reduction in removal efficiency at higher concentrations, it appears that even under 13 μM the plants were able to remove over 50% of this element, accumulating large amounts of As. The values of bioconcentration factor (BCF) were lower than 500, while the values of transfer factor (TF) in plants exposed to levels greater than 7 μM As, were greater than 1. This indicates that, as it increases the absorption of As by E. crassipes, there is increased translocation of this element to the shoot. The lower levels of chlorophyll and carotenoids found in E. crassipes probably compromised its photosynthetic capacity, justifying the reduction in relative growth rate of plants exposed to higher concentrations of As. Moreover, there was increase of anthocyanin content with increasing concentrations of As. In plants exposed to moderate concentrations of As, there was reduction in the levels of hydrogen peroxide (H2O2), indicating the efficient action of the enzymes involved in combating oxidative stress. The treatment with As increased the activity of superoxide dismutase (SOD) in leaves, up to 8 μM, which may represent part of a defense mechanism to oxidative stress caused by this element. The increase in activity of catalase (CAT) and a reduction in the levels of H2O2, in the roots of plants exposed to 6 μM of As, suggest that this enzyme operates effectively in the removal of this compound in this organ. As exposure inhibited the activity of peroxidase (POXs) in roots, however, leaves showed greater stimulation of enzyme activity. Thus, probably the reduction in levels of H2O2, observed in roots was due to the action of CAT, while POXs seem to have been responsible for the efficient removal of H2O2 in leaves. The activity of ascorbate peroxidase (APX) was stimulated in the presence of moderate concentrations of As in leaves, indicating that this enzyme should efficiently contribute to the removal of H2O2 produced in this organ. In the second experiment, plants were grown in nutrient solution containing or not 7 μM As. As exposure increased the activity of ATP sulfurylase (ATPS) in the roots, but did not alter the enzyme activity in leaves. On the other hand, As reduced activity of glutathione peroxidase (GSH-Px) and increased the activity of glutathione reductase (GR) both in leaves and roots. The glutathione sulfotransferase (GST) operates more effectively in the roots, where there was an increase in activity of this enzyme, indicating GSH conjugation to metalloid in these organs. The As treatment did not affect the activity of γ-glutamylcysteine synthetase (γ-ECS) in the roots, but stimulated the action of this enzyme in leaves. Furthermore, there was a significant reduction in total glutathione contents and increase of total thiols and non-protein thiols contents, which suggests a higher phytochelatin synthesis. The anatomical analysis revealed significant damage only in the apical region of the leaves, where initiate the toxic symptoms to As. Thus, the increase in activity of enzymes involved in glutathione metabolism is an important mechanism for tolerance and accumulation of As in E. crassipes. It appears that E. crassipes has a high absorption efficiency of As, and in concentrations up to 7 μM As, this plant has an increased activity of antioxidant enzymes contributing to the removal of excess reactive oxygen species arising from the toxicity of this element. Furthermore, the increased activity of enzymes involved in glutathione metabolism may represent an important mechanism for tolerance and accumulation of As in E. crassipes.Plantas de aguapé (Eichhornia crassipes (Mart.) Solms) foram submetidas a concentrações tóxicas de arsênio (As) para analisar a capacidade de absorção desse metaloide por essa macrófita e os seus efeitos tóxicos no crescimento e nas alterações estruturais em folhas e raízes, além de estudos dos mecanismos bioquímicos relacionados ao metabolismo antioxidativo e da glutationa envolvidos na tolerância ao As. No primeiro experimento, as plantas foram cultivadas em solução nutritiva, contendo 0; 3; 7; 10 e 13 μM de As, na forma de arsenato de sódio, durante três dias. Neste período, observaram-se sintomas visuais de toxidez que variaram conforme a concentração do metaloide presente na solução nutritiva. Os teores de As nas raízes aumentaram com o incremento da concentração de As na solução nutritiva até 9 μM, enquanto nas folhas os teores desse elemento aumentaram linearmente com a concentração de As. Quando submetidas a tratamentos com 3 μM de As, as plantas foram capazes de remover 97% desse elemento da solução e, embora tenha havido redução da eficiência de remoção nas concentrações mais elevadas, verifica-se que mesmo sob 13 μM de As, as plantas foram capazes de remover mais de 50% desse elemento, acumulando grandes quantidades de As. Os valores do fator de bioconcentração (FBC) foram menores que 500, enquanto os valores do fator de transferência (FT) nas plantas submetidas a concentrações maiores que 7 μM de As, foram superiores a 1,0. Isso indica que, à medida que se aumenta a absorção de As por E. crassipes, há maior translocação desse elemento para a parte aérea. Os menores teores de clorofilas e carotenoides encontrados em E. crassipes, provavelmente, comprometeram a sua capacidade fotossintética, justificando a redução na taxa de crescimento relativo das plantas expostas a concentrações mais elevadas de As. Por outro lado, houve aumento dos teores de antocianina com o acréscimo das concentrações de As. Nas plantas expostas a concentrações moderadas de As, houve redução nos teores de peróxido de hidrogênio (H2O2), indicando a ação eficiente das enzimas envolvidas com o combate ao estresse oxidativo. O tratamento com As aumentou a atividade da dismutase do superóxido (SOD) nas folhas, até a concentração de 8 μM desse metaloide, o que pode representar parte do mecanismo de defesa ao estresse oxidativo causado por esse elemento. O aumento na atividade da catalase (CAT) e a redução nos teores de H2O2 nas raízes das plantasexpostas até 6 μM de As, sugere que essa enzima atua efetivamente na remoção desse composto nesse órgão. A exposição ao As reduziu a atividade das peroxidases (POXs) nas raízes, entretanto, nas folhas, houve maior estímulo na atividade dessa enzima. Assim, verifica-se que, provavelmente, a redução nos teores de H2O2, observado nas raízes, foi decorrente da ação da CAT, enquanto as POXs parecem ter sido responsáveis pela remoção eficiente do H2O2 nas folhas. A atividade da peroxidase do ascorbato (APX), também, foi estimulada na presença de moderadas concentrações de As nas folhas, indicando que essa enzima deve contribuir eficientemente para a remoção do H2O2 produzido nesse órgão. No segundo experimento, as plantas foram cultivadas em solução nutritiva, contendo ou não 7 μM de As. A exposição ao As aumentou a atividade da sulfurilase do ATP (ATPS) nas raízes, mas não alterou a atividade dessa enzima nas folhas. Por outro lado, o As reduziu a atividade da peroxidase da glutationa (GSH-Px) e elevou a atividade da redutase da glutationa (GR), tanto nas folhas quanto nas raízes. A sulfotransferase da glutationa (GST) atua de forma mais efetiva nas raízes, onde houve aumento na atividade dessa enzima, indicando provável conjugação de glutationa (GSH) ao metaloide nesses órgãos. O tratamento com As não afetou a atividade da sintetase da γ-glutamilcisteína (γ-ECS) nas raízes, mas estimulou a ação dessa enzima nas folhas. Além disso, houve redução significativa nos teores de glutationa total, e aumento nos teores de tióis totais e de tióis não-protéicos, os quais sugerem maior síntese de fitoquelatinas. As análises anatômicas evidenciaram danos significativos somente na região apical das folhas, onde se iniciam os sintomas de toxidez ao As. A partir desses estudos, verifica-se que E. crassipes apresenta elevada eficiência de absorção de As, e sob concentrações de até 7 μM de As, essa planta apresenta um aumento na atividade das enzimas antioxidativas, contribuindo para a remoção do excesso de espécies reativas de oxigênio decorrentes da toxidez por esse elemento. Além disso, o aumento na atividade de enzimas envolvidas com o metabolismo da glutationa pode representar um mecanismo importante para a tolerância e o acúmulo de As em E. crassipes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal de ViçosaDoutorado em Fisiologia VegetalUFVBRControle da maturação e senescência em órgãos perecíveis; Fisiologia molecular de plantas superioresFitorremediaçãoMacrófita aquáticaEnzimas antioxidantesGlutationaAnatomia vegetalPhytoremediationAquatic macrophyteAntioxidant enzymesGlutathionePlant anatomyCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::FISIOLOGIA DE PLANTAS CULTIVADASSistemas de defesa antioxidativo contra a toxicidade induzida por arsênio em aguapé (Eichhornia crassipes (Mart.) Solms)Antioxidative defense systems against toxicity induced by arsenic in water hyacinth (Eichhornia crassipes (Mart.) Solms)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf1517522https://locus.ufv.br//bitstream/123456789/984/1/texto%20completo.pdf055e04d7b795f7a278747474f5a4f1f8MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain159586https://locus.ufv.br//bitstream/123456789/984/2/texto%20completo.pdf.txtdf5fbfe7e52b9cad5a68b762cb7719f8MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3560https://locus.ufv.br//bitstream/123456789/984/3/texto%20completo.pdf.jpg2d0705aa3704dc90b078b3199e3f8eb9MD53123456789/9842016-04-06 23:20:56.055oai:locus.ufv.br:123456789/984Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-07T02:20:56LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Sistemas de defesa antioxidativo contra a toxicidade induzida por arsênio em aguapé (Eichhornia crassipes (Mart.) Solms)
dc.title.alternative.eng.fl_str_mv Antioxidative defense systems against toxicity induced by arsenic in water hyacinth (Eichhornia crassipes (Mart.) Solms)
title Sistemas de defesa antioxidativo contra a toxicidade induzida por arsênio em aguapé (Eichhornia crassipes (Mart.) Solms)
spellingShingle Sistemas de defesa antioxidativo contra a toxicidade induzida por arsênio em aguapé (Eichhornia crassipes (Mart.) Solms)
Reis, Iulla Naiff Rabelo de Souza
Fitorremediação
Macrófita aquática
Enzimas antioxidantes
Glutationa
Anatomia vegetal
Phytoremediation
Aquatic macrophyte
Antioxidant enzymes
Glutathione
Plant anatomy
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::FISIOLOGIA DE PLANTAS CULTIVADAS
title_short Sistemas de defesa antioxidativo contra a toxicidade induzida por arsênio em aguapé (Eichhornia crassipes (Mart.) Solms)
title_full Sistemas de defesa antioxidativo contra a toxicidade induzida por arsênio em aguapé (Eichhornia crassipes (Mart.) Solms)
title_fullStr Sistemas de defesa antioxidativo contra a toxicidade induzida por arsênio em aguapé (Eichhornia crassipes (Mart.) Solms)
title_full_unstemmed Sistemas de defesa antioxidativo contra a toxicidade induzida por arsênio em aguapé (Eichhornia crassipes (Mart.) Solms)
title_sort Sistemas de defesa antioxidativo contra a toxicidade induzida por arsênio em aguapé (Eichhornia crassipes (Mart.) Solms)
author Reis, Iulla Naiff Rabelo de Souza
author_facet Reis, Iulla Naiff Rabelo de Souza
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/8106163075243327
dc.contributor.author.fl_str_mv Reis, Iulla Naiff Rabelo de Souza
dc.contributor.advisor-co1.fl_str_mv Ventrella, Marília Contin
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763436A2
dc.contributor.advisor-co2.fl_str_mv Otoni, Wagner Campos
dc.contributor.advisor-co2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786133Y6
dc.contributor.advisor1.fl_str_mv Oliveira, Juraci Alves de
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782512D8
dc.contributor.referee1.fl_str_mv Cambraia, José
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783868U6
dc.contributor.referee2.fl_str_mv Mello, Jaime Wilson Vargas de
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4789445D2
dc.contributor.referee3.fl_str_mv Ribeiro, Sylvia Therese Meyer
dc.contributor.referee3Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4780180A0
contributor_str_mv Ventrella, Marília Contin
Otoni, Wagner Campos
Oliveira, Juraci Alves de
Cambraia, José
Mello, Jaime Wilson Vargas de
Ribeiro, Sylvia Therese Meyer
dc.subject.por.fl_str_mv Fitorremediação
Macrófita aquática
Enzimas antioxidantes
Glutationa
Anatomia vegetal
topic Fitorremediação
Macrófita aquática
Enzimas antioxidantes
Glutationa
Anatomia vegetal
Phytoremediation
Aquatic macrophyte
Antioxidant enzymes
Glutathione
Plant anatomy
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::FISIOLOGIA DE PLANTAS CULTIVADAS
dc.subject.eng.fl_str_mv Phytoremediation
Aquatic macrophyte
Antioxidant enzymes
Glutathione
Plant anatomy
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::FISIOLOGIA DE PLANTAS CULTIVADAS
description Water hyacinth (Eichhornia crassipes (Mart.) Solms) was subjected to toxic concentrations of arsenic (As) to analyze the absorption capacity of this metalloid by this macrophyte and its toxic effects on growth and structural changes in leaves and roots, as well as studies of biochemical mechanisms related to metabolism and glutathione antioxidant involved in tolerance to As. In the first experiment, plants were grown in nutrient solution containing 0; 3; 7; 10 e 13 μM As, in the form of sodium arsenate for three days. In this period, there were symptoms of toxicity that changed according to the concentration of this metalloid in the nutrient solution. The As contents in roots increased with increasing concentration of As in the nutrient solution up to 9 μM, while in leaves the levels of this element increased linearly with As concentration. When treated with 3 μM As, the plants were able removing 97% of this element from the solution and, although there was reduction in removal efficiency at higher concentrations, it appears that even under 13 μM the plants were able to remove over 50% of this element, accumulating large amounts of As. The values of bioconcentration factor (BCF) were lower than 500, while the values of transfer factor (TF) in plants exposed to levels greater than 7 μM As, were greater than 1. This indicates that, as it increases the absorption of As by E. crassipes, there is increased translocation of this element to the shoot. The lower levels of chlorophyll and carotenoids found in E. crassipes probably compromised its photosynthetic capacity, justifying the reduction in relative growth rate of plants exposed to higher concentrations of As. Moreover, there was increase of anthocyanin content with increasing concentrations of As. In plants exposed to moderate concentrations of As, there was reduction in the levels of hydrogen peroxide (H2O2), indicating the efficient action of the enzymes involved in combating oxidative stress. The treatment with As increased the activity of superoxide dismutase (SOD) in leaves, up to 8 μM, which may represent part of a defense mechanism to oxidative stress caused by this element. The increase in activity of catalase (CAT) and a reduction in the levels of H2O2, in the roots of plants exposed to 6 μM of As, suggest that this enzyme operates effectively in the removal of this compound in this organ. As exposure inhibited the activity of peroxidase (POXs) in roots, however, leaves showed greater stimulation of enzyme activity. Thus, probably the reduction in levels of H2O2, observed in roots was due to the action of CAT, while POXs seem to have been responsible for the efficient removal of H2O2 in leaves. The activity of ascorbate peroxidase (APX) was stimulated in the presence of moderate concentrations of As in leaves, indicating that this enzyme should efficiently contribute to the removal of H2O2 produced in this organ. In the second experiment, plants were grown in nutrient solution containing or not 7 μM As. As exposure increased the activity of ATP sulfurylase (ATPS) in the roots, but did not alter the enzyme activity in leaves. On the other hand, As reduced activity of glutathione peroxidase (GSH-Px) and increased the activity of glutathione reductase (GR) both in leaves and roots. The glutathione sulfotransferase (GST) operates more effectively in the roots, where there was an increase in activity of this enzyme, indicating GSH conjugation to metalloid in these organs. The As treatment did not affect the activity of γ-glutamylcysteine synthetase (γ-ECS) in the roots, but stimulated the action of this enzyme in leaves. Furthermore, there was a significant reduction in total glutathione contents and increase of total thiols and non-protein thiols contents, which suggests a higher phytochelatin synthesis. The anatomical analysis revealed significant damage only in the apical region of the leaves, where initiate the toxic symptoms to As. Thus, the increase in activity of enzymes involved in glutathione metabolism is an important mechanism for tolerance and accumulation of As in E. crassipes. It appears that E. crassipes has a high absorption efficiency of As, and in concentrations up to 7 μM As, this plant has an increased activity of antioxidant enzymes contributing to the removal of excess reactive oxygen species arising from the toxicity of this element. Furthermore, the increased activity of enzymes involved in glutathione metabolism may represent an important mechanism for tolerance and accumulation of As in E. crassipes.
publishDate 2011
dc.date.issued.fl_str_mv 2011-03-25
dc.date.available.fl_str_mv 2012-03-16
2015-03-26T12:40:41Z
dc.date.accessioned.fl_str_mv 2015-03-26T12:40:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv REIS, Iulla Naiff Rabelo de Souza. Antioxidative defense systems against toxicity induced by arsenic in water hyacinth (Eichhornia crassipes (Mart.) Solms). 2011. 91 f. Tese (Doutorado em Controle da maturação e senescência em órgãos perecíveis; Fisiologia molecular de plantas superiores) - Universidade Federal de Viçosa, Viçosa, 2011.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/984
identifier_str_mv REIS, Iulla Naiff Rabelo de Souza. Antioxidative defense systems against toxicity induced by arsenic in water hyacinth (Eichhornia crassipes (Mart.) Solms). 2011. 91 f. Tese (Doutorado em Controle da maturação e senescência em órgãos perecíveis; Fisiologia molecular de plantas superiores) - Universidade Federal de Viçosa, Viçosa, 2011.
url http://locus.ufv.br/handle/123456789/984
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Doutorado em Fisiologia Vegetal
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Controle da maturação e senescência em órgãos perecíveis; Fisiologia molecular de plantas superiores
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/984/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/984/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/984/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 055e04d7b795f7a278747474f5a4f1f8
df5fbfe7e52b9cad5a68b762cb7719f8
2d0705aa3704dc90b078b3199e3f8eb9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1794528681350135808