Estratégias de seleção, amostragem e mapeamento genético na seleção genômica

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Jangarelli, Marcelo
Orientador(a): Euclydes, Ricardo Frederico lattes
Banca de defesa: Cruz, Cosme Damião lattes, Souza, Gustavo Henrique de lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Doutorado em Genética e Melhoramento
Departamento: Genética animal; Genética molecular e de microrganismos; Genética quantitativa; Genética vegetal; Me
País: BR
Palavras-chave em Português:
QTL
Palavras-chave em Inglês:
QTL
Área do conhecimento CNPq:
Link de acesso: http://locus.ufv.br/handle/123456789/1300
Resumo: The simulation has contributed to the advancement of genomics in different areas of genetic improvement. The possibility of simulation of different scenarios, according to genetic assumptions and statistics of interest, optimizes the use of resources for analysis of genetic mapping and QTL studies. Different strategies of selection, sampling and mapping were simulated in this study, in order to estimate and compare the phenotypic performance in marker-assisted selection (MAS). Through the genetic simulation program Genesys three genomes were simulated, each one consisting of a single quantitative characteristic, whose only distinction was the value of the heritabilityof the character: 0,10; 0,40 and 0,70. A base population composed by 500 males and 500 females (1.000 individuals),unrelated to each other, was built from each simulated genomic structure. The initial populations were formed by the 1.000 descendents randomly selected in each base population, obtained from the crossing of 100 males and 100 females (1 female/male), producing 10 children/female/male (1.000 individuals). Each initial population was submitted to MAS by 20 consecutive generations. The selection was conducted with the purpose of increasing the phenotypic value. In Chapter 1, mating strategies between the parents selected were evaluated, in different sizes of family, through selective mating among the best and the worst, breeding only among the best and / or between the worst and random mating. In all scenarios of heritability and selection, selective breeding following the principle of selective genotyping, whose methodology uses individuals positioned at opposite extremes of the normal distribution of an evaluated parameter, was superior to the others. It was more effective in the phenotypic increment and minimization of endogamy averages and, consequently, in the detection of QTL over generations. By using the strategy of selective mating, smaller family size is required to optimize the phenotypic gain as the value of the heritability of the trait increases. In Chapter 2, this selective breeding was used to assess its ability to reduce the number of individuals required to optimize the phenotypic performance resulting from MAS. Each initial population, composed by 1.000 individuals, was subjected to 10 marker-assisted selections, in which the difference was in family size assumed over the selection process. Cluster analysis was realized with the phenotypic values resulting from selective processes, whose purpose was to obtain structures of classification among the family sizes to maximize the phenotypic growth. The selective breeding strategy was efficient in order to minimize the number of individuals needed in a mapping population for a particular phenotypic progress. As the magnitude of heritability rises, smaller family sizes are required to maintain the similarities in the phenotypic gains with the largest families. The use of samples with family sizes up to 30, 25 and 20 descendents, for the heritability 0,10; 0,40 and 0,70, respectively, is not necessary, according to the equivalent inferences indicated by the optimization method proposed by Tocher, originated from the Statistical Analysis System - SAEG. In the third chapter, the selective mating strategy was kept, assessing the genetic mapping in different levels of saturation by molecular markers. The difference from the previous chapters was in the initial populations, composed by 500 individuals randomly selected in each base population, obtained by crossing 50 males and 50 females (1 female/male), producing 10 children/female/male (500 individuals ). Each initial population was subjected to 15 marker-assisted selections, differing each other in the number of markers used in the genetic mapping. One more time, cluster analysis with phenotypic values resulting from the processes of selection was applied, in order to obtain structures of classification among the saturation levels, to benefit the phenotypic growth. The refinement using medium to high saturation by markers pointed efficiency in the phenotypic progress achieved with MAS. Lesser amounts of markers are required to maintain certain phenotypic progress as it increases the magnitude of heritability. Cluster analysis indicated optimization and correspondence in phenotypic answers when assuming the densities: i) 4 and 6 cM, ii) 4, 6, 8 and 10 cM, and iii) 6 and 8 cM, for heritabilities 0,10; 0,40 and 0,70, respectively.
id UFV_3b3a266fe01bd806d790e2b43e722b7c
oai_identifier_str oai:locus.ufv.br:123456789/1300
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str
spelling Jangarelli, Marcelohttp://lattes.cnpq.br/3839549418171209Carneiro, Antônio Policarpo Souzahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8Cecon, Paulo Robertohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5Euclydes, Ricardo Fredericohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788533U6Cruz, Cosme Damiãohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6Souza, Gustavo Henrique dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4760298P62015-03-26T12:45:22Z2009-12-142015-03-26T12:45:22Z2009-09-11JANGARELLI, Marcelo. Strategies of selection, sampling and genetic mapping in genomic selection. 2009. 99 f. Tese (Doutorado em Genética animal; Genética molecular e de microrganismos; Genética quantitativa; Genética vegetal; Me) - Universidade Federal de Viçosa, Viçosa, 2009.http://locus.ufv.br/handle/123456789/1300The simulation has contributed to the advancement of genomics in different areas of genetic improvement. The possibility of simulation of different scenarios, according to genetic assumptions and statistics of interest, optimizes the use of resources for analysis of genetic mapping and QTL studies. Different strategies of selection, sampling and mapping were simulated in this study, in order to estimate and compare the phenotypic performance in marker-assisted selection (MAS). Through the genetic simulation program Genesys three genomes were simulated, each one consisting of a single quantitative characteristic, whose only distinction was the value of the heritabilityof the character: 0,10; 0,40 and 0,70. A base population composed by 500 males and 500 females (1.000 individuals),unrelated to each other, was built from each simulated genomic structure. The initial populations were formed by the 1.000 descendents randomly selected in each base population, obtained from the crossing of 100 males and 100 females (1 female/male), producing 10 children/female/male (1.000 individuals). Each initial population was submitted to MAS by 20 consecutive generations. The selection was conducted with the purpose of increasing the phenotypic value. In Chapter 1, mating strategies between the parents selected were evaluated, in different sizes of family, through selective mating among the best and the worst, breeding only among the best and / or between the worst and random mating. In all scenarios of heritability and selection, selective breeding following the principle of selective genotyping, whose methodology uses individuals positioned at opposite extremes of the normal distribution of an evaluated parameter, was superior to the others. It was more effective in the phenotypic increment and minimization of endogamy averages and, consequently, in the detection of QTL over generations. By using the strategy of selective mating, smaller family size is required to optimize the phenotypic gain as the value of the heritability of the trait increases. In Chapter 2, this selective breeding was used to assess its ability to reduce the number of individuals required to optimize the phenotypic performance resulting from MAS. Each initial population, composed by 1.000 individuals, was subjected to 10 marker-assisted selections, in which the difference was in family size assumed over the selection process. Cluster analysis was realized with the phenotypic values resulting from selective processes, whose purpose was to obtain structures of classification among the family sizes to maximize the phenotypic growth. The selective breeding strategy was efficient in order to minimize the number of individuals needed in a mapping population for a particular phenotypic progress. As the magnitude of heritability rises, smaller family sizes are required to maintain the similarities in the phenotypic gains with the largest families. The use of samples with family sizes up to 30, 25 and 20 descendents, for the heritability 0,10; 0,40 and 0,70, respectively, is not necessary, according to the equivalent inferences indicated by the optimization method proposed by Tocher, originated from the Statistical Analysis System - SAEG. In the third chapter, the selective mating strategy was kept, assessing the genetic mapping in different levels of saturation by molecular markers. The difference from the previous chapters was in the initial populations, composed by 500 individuals randomly selected in each base population, obtained by crossing 50 males and 50 females (1 female/male), producing 10 children/female/male (500 individuals ). Each initial population was subjected to 15 marker-assisted selections, differing each other in the number of markers used in the genetic mapping. One more time, cluster analysis with phenotypic values resulting from the processes of selection was applied, in order to obtain structures of classification among the saturation levels, to benefit the phenotypic growth. The refinement using medium to high saturation by markers pointed efficiency in the phenotypic progress achieved with MAS. Lesser amounts of markers are required to maintain certain phenotypic progress as it increases the magnitude of heritability. Cluster analysis indicated optimization and correspondence in phenotypic answers when assuming the densities: i) 4 and 6 cM, ii) 4, 6, 8 and 10 cM, and iii) 6 and 8 cM, for heritabilities 0,10; 0,40 and 0,70, respectively.A simulação tem contribuído para o avanço da genômica nas diversas áreas do melhoramento genético. A possibilidade de serem simulados diferentes cenários, de acordo com pressuposições genéticas e estatísticas de interesse, otimiza a utilização de recursos para análise de mapeamento genético e estudos de QTL. Neste trabalho foram simuladas diferentes estratégias de seleção, amostragem e mapeamento com o objetivo de estimar e comparar o desempenho fenotípico na seleção assistida por marcadores (MAS). Por meio do programa de simulação genética Genesys foram simulados três genomas, cada qual constituído de uma única característica quantitativa, cuja distinção estava apenas no valor da herdabilidade do caráter: 0,10; 0,40 e 0,70. A partir de cada estrutura genômica simulada foi construída uma população base composta de 500 machos e 500 fêmeas (1.000 indivíduos), não aparentados entre si. Com os 1.000 descendentes escolhidos aleatoriamente em cada população base, obtidos do cruzamento de 100 machos e 100 fêmeas (1 fêmea/macho), produzindo 10 filhos/fêmea/macho (1.000 indivíduos), formaram-se as populações iniciais. Cada população inicial foi submetida à MAS por 20 gerações consecutivas. A seleção foi conduzida com a finalidade de incrementar o valor fenotípico. No capítulo 1 foram avaliadas estratégias de acasalamento entre os genitores selecionados, em diferentes tamanhos de família, através do acasalamento seletivo entre os melhores e os piores, acasalamento apenas entre os melhores e/ou entre os piores e acasalamento aleatório. Em todos os cenários de herdabilidade e de seleção, o acasalamento seletivo seguindo o princípio da genotipagem seletiva, cuja metodologia utiliza indivíduos posicionados nos extremos opostos da distribuição normal de um parâmetro avaliado, foi superior aos demais. Ele foi mais eficaz no incremento fenotípico e na minimização das médias endogâmicas e, consequentemente, na detecção de QTL, ao longo das gerações. Ao utilizar a estratégia seletiva de acasalamento, menor tamanho de família é requerido para otimizar o ganho fenotípico à medida que o valor da herdabilidade da característica aumenta. No capítulo 2 este acasalamento seletivo foi utilizado para avaliar sua capacidade em reduzir o número de indivíduos requeridos para otimizar os desempenhos fenotípicos resultantes da MAS. Cada população inicial, composta de 1.000 indivíduos, foi submetida a dez seleções assistida por marcadores, em que a diferença estava no tamanho de família admitido ao longo dos processos de seleção. Procedeu-se análise de agrupamento com os valores fenotípicos resultantes dos processos seletivos, cuja finalidade foi obter estruturas de classificação entre os tamanhos de família visando maximizar o incremento fenotípico. A estratégia seletiva de acasalamento mostrou-se eficiente na tentativa de minimizar o número de indivíduos necessários em uma população de mapeamento, para determinado progresso fenotípico. À medida que a magnitude da herdabilidade se eleva menores tamanhos de família são exigidos para manter similaridades nos ganhos fenotípicos com as maiores famílias. O emprego de amostras com tamanhos de família superiores a 30; 25 e 20 descendentes, para as herdabilidades 0,10; 0,40 e 0,70, respectivamente, torna-se desnecessário, conforme as inferências equivalentes indicadas pelo método de otimização proposto por Tocher, oriundas do Sistema de Análises Estatísticas - SAEG. No terceiro capítulo manteve-se a estratégia de acasalamento seletivo, aferindo o mapeamento genético em distintos níveis de saturação por marcadores moleculares. A diferença em relação aos capítulos anteriores estava nas populações iniciais, compostas de 500 indivíduos, escolhidos aleatoriamente em cada população base, obtidos do cruzamento de 50 machos e 50 fêmeas (1 fêmea/macho), produzindo 10 filhos/fêmea/macho (500 indivíduos). Cada população inicial foi submetida a 15 seleções assistida por marcadores, diferenciando-se na quantidade de marcadores admitida no mapeamento genético. Novamente, aplicou-se análise de agrupamento com os valores fenotípicos resultantes dos processos de seleção, com o propósito de obter estruturas de classificação entre os níveis de saturação, visando beneficiar o incremento fenotípico. O refinamento empregando de média a alta saturação por marcadores assinalou eficiência nos progressos fenotípicos obtidos com à MAS. Menores quantidades de marcadores são requeridas para manter determinado progresso fenotípico à medida que se eleva a magnitude da herdabilidade. A análise de agrupamento indicou otimização e correspondência nas respostas fenotípicas ao admitir as densidades de: i) 4 e 6 cM; ii) 4, 6, 8 e 10 cM; e iii) 6 e 8 cM, para herdabilidades 0,10; 0,40 e 0,70, respectivamente.Conselho Nacional de Desenvolvimento Científico e Tecnológicoapplication/pdfporUniversidade Federal de ViçosaDoutorado em Genética e MelhoramentoUFVBRGenética animal; Genética molecular e de microrganismos; Genética quantitativa; Genética vegetal; MeDistribuição dos extremosGenotipagem seletivaMarcadores molecularesSimulaçãoQTLExtremes distributionSelective genotypingMolecular markersSimulationQTLCNPQ::CIENCIAS AGRARIAS::ZOOTECNIA::GENETICA E MELHORAMENTO DOS ANIMAIS DOMESTICOSEstratégias de seleção, amostragem e mapeamento genético na seleção genômicaStrategies of selection, sampling and genetic mapping in genomic selectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf374424https://locus.ufv.br//bitstream/123456789/1300/1/texto%20completo.pdf4870395e996b766fa1550f5e0f7ab15dMD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain211016https://locus.ufv.br//bitstream/123456789/1300/2/texto%20completo.pdf.txtdc9b5f44899f6e9f0b0da298648df02bMD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3652https://locus.ufv.br//bitstream/123456789/1300/3/texto%20completo.pdf.jpgc6b5862b63be62df92f467a14b149588MD53123456789/13002016-04-07 23:02:30.86oai:locus.ufv.br:123456789/1300Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-08T02:02:30LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Estratégias de seleção, amostragem e mapeamento genético na seleção genômica
dc.title.alternative.eng.fl_str_mv Strategies of selection, sampling and genetic mapping in genomic selection
title Estratégias de seleção, amostragem e mapeamento genético na seleção genômica
spellingShingle Estratégias de seleção, amostragem e mapeamento genético na seleção genômica
Jangarelli, Marcelo
Distribuição dos extremos
Genotipagem seletiva
Marcadores moleculares
Simulação
QTL
Extremes distribution
Selective genotyping
Molecular markers
Simulation
QTL
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA::GENETICA E MELHORAMENTO DOS ANIMAIS DOMESTICOS
title_short Estratégias de seleção, amostragem e mapeamento genético na seleção genômica
title_full Estratégias de seleção, amostragem e mapeamento genético na seleção genômica
title_fullStr Estratégias de seleção, amostragem e mapeamento genético na seleção genômica
title_full_unstemmed Estratégias de seleção, amostragem e mapeamento genético na seleção genômica
title_sort Estratégias de seleção, amostragem e mapeamento genético na seleção genômica
author Jangarelli, Marcelo
author_facet Jangarelli, Marcelo
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/3839549418171209
dc.contributor.author.fl_str_mv Jangarelli, Marcelo
dc.contributor.advisor-co1.fl_str_mv Carneiro, Antônio Policarpo Souza
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8
dc.contributor.advisor-co2.fl_str_mv Cecon, Paulo Roberto
dc.contributor.advisor-co2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5
dc.contributor.advisor1.fl_str_mv Euclydes, Ricardo Frederico
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788533U6
dc.contributor.referee1.fl_str_mv Cruz, Cosme Damião
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6
dc.contributor.referee2.fl_str_mv Souza, Gustavo Henrique de
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4760298P6
contributor_str_mv Carneiro, Antônio Policarpo Souza
Cecon, Paulo Roberto
Euclydes, Ricardo Frederico
Cruz, Cosme Damião
Souza, Gustavo Henrique de
dc.subject.por.fl_str_mv Distribuição dos extremos
Genotipagem seletiva
Marcadores moleculares
Simulação
QTL
topic Distribuição dos extremos
Genotipagem seletiva
Marcadores moleculares
Simulação
QTL
Extremes distribution
Selective genotyping
Molecular markers
Simulation
QTL
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA::GENETICA E MELHORAMENTO DOS ANIMAIS DOMESTICOS
dc.subject.eng.fl_str_mv Extremes distribution
Selective genotyping
Molecular markers
Simulation
QTL
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA::GENETICA E MELHORAMENTO DOS ANIMAIS DOMESTICOS
description The simulation has contributed to the advancement of genomics in different areas of genetic improvement. The possibility of simulation of different scenarios, according to genetic assumptions and statistics of interest, optimizes the use of resources for analysis of genetic mapping and QTL studies. Different strategies of selection, sampling and mapping were simulated in this study, in order to estimate and compare the phenotypic performance in marker-assisted selection (MAS). Through the genetic simulation program Genesys three genomes were simulated, each one consisting of a single quantitative characteristic, whose only distinction was the value of the heritabilityof the character: 0,10; 0,40 and 0,70. A base population composed by 500 males and 500 females (1.000 individuals),unrelated to each other, was built from each simulated genomic structure. The initial populations were formed by the 1.000 descendents randomly selected in each base population, obtained from the crossing of 100 males and 100 females (1 female/male), producing 10 children/female/male (1.000 individuals). Each initial population was submitted to MAS by 20 consecutive generations. The selection was conducted with the purpose of increasing the phenotypic value. In Chapter 1, mating strategies between the parents selected were evaluated, in different sizes of family, through selective mating among the best and the worst, breeding only among the best and / or between the worst and random mating. In all scenarios of heritability and selection, selective breeding following the principle of selective genotyping, whose methodology uses individuals positioned at opposite extremes of the normal distribution of an evaluated parameter, was superior to the others. It was more effective in the phenotypic increment and minimization of endogamy averages and, consequently, in the detection of QTL over generations. By using the strategy of selective mating, smaller family size is required to optimize the phenotypic gain as the value of the heritability of the trait increases. In Chapter 2, this selective breeding was used to assess its ability to reduce the number of individuals required to optimize the phenotypic performance resulting from MAS. Each initial population, composed by 1.000 individuals, was subjected to 10 marker-assisted selections, in which the difference was in family size assumed over the selection process. Cluster analysis was realized with the phenotypic values resulting from selective processes, whose purpose was to obtain structures of classification among the family sizes to maximize the phenotypic growth. The selective breeding strategy was efficient in order to minimize the number of individuals needed in a mapping population for a particular phenotypic progress. As the magnitude of heritability rises, smaller family sizes are required to maintain the similarities in the phenotypic gains with the largest families. The use of samples with family sizes up to 30, 25 and 20 descendents, for the heritability 0,10; 0,40 and 0,70, respectively, is not necessary, according to the equivalent inferences indicated by the optimization method proposed by Tocher, originated from the Statistical Analysis System - SAEG. In the third chapter, the selective mating strategy was kept, assessing the genetic mapping in different levels of saturation by molecular markers. The difference from the previous chapters was in the initial populations, composed by 500 individuals randomly selected in each base population, obtained by crossing 50 males and 50 females (1 female/male), producing 10 children/female/male (500 individuals ). Each initial population was subjected to 15 marker-assisted selections, differing each other in the number of markers used in the genetic mapping. One more time, cluster analysis with phenotypic values resulting from the processes of selection was applied, in order to obtain structures of classification among the saturation levels, to benefit the phenotypic growth. The refinement using medium to high saturation by markers pointed efficiency in the phenotypic progress achieved with MAS. Lesser amounts of markers are required to maintain certain phenotypic progress as it increases the magnitude of heritability. Cluster analysis indicated optimization and correspondence in phenotypic answers when assuming the densities: i) 4 and 6 cM, ii) 4, 6, 8 and 10 cM, and iii) 6 and 8 cM, for heritabilities 0,10; 0,40 and 0,70, respectively.
publishDate 2009
dc.date.available.fl_str_mv 2009-12-14
2015-03-26T12:45:22Z
dc.date.issued.fl_str_mv 2009-09-11
dc.date.accessioned.fl_str_mv 2015-03-26T12:45:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv JANGARELLI, Marcelo. Strategies of selection, sampling and genetic mapping in genomic selection. 2009. 99 f. Tese (Doutorado em Genética animal; Genética molecular e de microrganismos; Genética quantitativa; Genética vegetal; Me) - Universidade Federal de Viçosa, Viçosa, 2009.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/1300
identifier_str_mv JANGARELLI, Marcelo. Strategies of selection, sampling and genetic mapping in genomic selection. 2009. 99 f. Tese (Doutorado em Genética animal; Genética molecular e de microrganismos; Genética quantitativa; Genética vegetal; Me) - Universidade Federal de Viçosa, Viçosa, 2009.
url http://locus.ufv.br/handle/123456789/1300
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Doutorado em Genética e Melhoramento
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Genética animal; Genética molecular e de microrganismos; Genética quantitativa; Genética vegetal; Me
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/1300/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/1300/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/1300/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 4870395e996b766fa1550f5e0f7ab15d
dc9b5f44899f6e9f0b0da298648df02b
c6b5862b63be62df92f467a14b149588
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1794528691408076800