Implantação de íons de prata em aço inoxidável e infecção fágica para o controle de adesão e formação de biofilmes bacterianos na indústria de alimentos

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Novello, Junia Cápua de Lima
Orientador(a): Andrade, Nélio José de lattes
Banca de defesa: Pinto, Cláudia Lúcia de Oliveira lattes, Carvalho, Antônio Fernandes de lattes, Azeredo, Joana Cecília Valente de Rodrigues
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Doutorado em Ciência e Tecnologia de Alimentos
Departamento: Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://locus.ufv.br/handle/123456789/466
Resumo: The bacterial adhesion and biofilm formation on food contact surfaces can lead to the increased in corrosion of equipment surfaces and pipes blockage. Moreover, it can also cause foodborne illness, which results in economic losses, and, especially, in public health problems. The aims of this work were to evaluate the adhesion of Listeria monocytogenes CECT 4031T on the austenitic stainless steel (AISI 304) and ferritic (AISI 430) surfaces implanted with Ag+1 ions; study the biofilm formation of L. monocytogenes (strains 747 and 994) in single and mixed culture with cells of Pseudomonas fluorescens ATCC 27663 on austenitic stainless steel surfaces, AISI 304, finishing #4, in the biofilm and; study the biocontrol of L. monocytogenes 747 in mixed culture with P. fluorescens ATCC 27663 by infection with bacteriophage &#981;IBB PF7A. Ag+1 ions were implanted in austenitic stainless steel, AISI 304, and ferritic surfaces, AISI 430, finishing #2B, 4, 6 and 8, with the energy of 200 keV, and austenitic stainless steel, AISI 304, finish #2B, with the energy of 70 keV. The depth of Ag+1 ions, chemical composition, hydrophobicity (qualitative and quantitative), and roughness for stainless steel surfaces were evaluated by Rutherford backscattering spectrometry (RBS) spectroscopy, X-ray photoelectron (XPS), contact angle and atomic force microscopy, respectively. Qualitatively and quantitatively hydrophobicity for bacterial strains, L. monocytogenes and P. fluorescens, were also evaluated. The technique of fluorescence in situ hybridization of peptide nucleic acids (PNA Fish) was used to study the biofilm formation ability of L. monocytogenes 747 in single or mixed culture with P. fluorescens, before or after infection with bacteriophage- &#981;IBBPF7A. The results showed that Ag+1 ions implanted with energy of 200 keV presented an average depth of 25 nm and, when implanted with energy of 70 keV, these ions were found shallower, with an average depth of 15 nm. Additionally, the XPS analyzes confirmed the presence of silver in the implanted surfaces. There was significant difference (p < 0.05) between the roughness surfaces of stainless steel (Ra and Rz). Ferritic stainless steel, AISI 430, finishing # 4, with Ag+1 ions showed highest roughness and ferritic stainless steel, AISI 430, finishing #8, with and without Ag+1 lowest. After implantation of Ag+1, it was possible to observe a significant reduction on values of the contact angles with water (&#952;w) (p < 0.05) and alterations on the free energy of interaction between identical surfaces immersed in water (&#916;G TOT SWS). Ferritic stainless steel, AISI 430, finishing #8, without Ag+1 ions implanted, showed highest values of hydrophobicity (- 64.67 mJ.m-2). The number of L. monocytogenes CECT 4031T cells adhered proved to be materials dependents (p < 0.05), with lowest values for stainless steel, AISI 304, finishing #2B, with silver implanted at 70 keV (2.63 ± 0.32 log CFU.cm-2). Furthermore, there was no correlation between the number of adhered cells of L. monocytogenes CECT 4031T and the variation of the total free energy of interaction (&#916;G). Important is to emphasize that no direct relationship was observed between the number of adhered cells and the roughness of the surfaces of stainless steel. L. monocytogenes and P. fluorescens cells shown to be hydrophilic, and the greatest variation in total free energy of interaction was observed for P. fluorescens (- 27.91 mJ.m-2). L. monocytogenes 747 and 994, in single culture, were able to adhere at 4 °C and formed biofilms at 25 °C and 37 ºC in stainless steel AISI 304, finishing #4. Moreover, there was significant difference (p < 0.05) in the number of viable cells in single biofilms of P. fluorescens under the tested temperatures measured with scores of 7,26 log CFU.cm-2 ,at 25 ºC, and 5,26 log CFU.cm-2, at 37 ºC. The number of viable bacteria cells measured in planktonic forms or single biofimes decreased (p < 0.05) after contact with the &#981;IBB-PF7A bacteriophage, reaching 5.5 log reduction, after 6 h, and 2.03 log reduction, after 24 h. In mixed biofilms with L. monocytogenes 747, it was also observed a reduction in the number of P. fluorescens viable cells (p < 0.05), after 6 h with phage contact, reaching 5.6 log reduction. However, after 24 h, the reduction in the number of P. fluorescens cells was not significant (p > 0.05) (2.19 log reduction). From this time, there was an increase of population, which can be attributed to bacterial resistance to phage, possibly initiated during planktonic cells lifestyle. Epifluorescence microscopy images allow us to confirm that both L. monocytogenes 747 and P. fluorescens were able to form biofilms on glass surfaces in single and mixed culture at 25 °C. It was also observed that the structure of biofilm of P. fluorescens and L. monocytogenes 747 consists of a monolayer of cells with a mixture of both microorganisms. Important is to highlight that the Ag+1 ion implantation is a causative agent able for reducting the number of adhered cells of L. monocytogenes to stainless steel. In the initial time, phage infection was able to cause a reduction on the number of adhered cells of L. monocytogenes and P. fluorescens in biofilms. So, this work presents itself as an important step in researching new technologies that can be employed to reduce or prevent bacterial adhesion and biofilms formation.
id UFV_7304fd05af26d9d3a4b6f9d1c4cfddf2
oai_identifier_str oai:locus.ufv.br:123456789/466
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str
spelling Novello, Junia Cápua de Limahttp://lattes.cnpq.br/8090582956247122Ferreira, Sukarno Olavohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786429E5Coimbra, Jane Sélia dos Reishttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798752J6Andrade, Nélio José dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788281Y5Pinto, Cláudia Lúcia de Oliveirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783521J6Carvalho, Antônio Fernandes dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781655T2Azeredo, Joana Cecília Valente de Rodrigues2015-03-26T12:25:09Z2013-12-102015-03-26T12:25:09Z2012-05-02NOVELLO, Junia Cápua de Lima. Implantation of silver ion in stainless steel and phage infection to control of bacterial adhesion and biofilm formation in food industry. 2012. 134 f. Tese (Doutorado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2012.http://locus.ufv.br/handle/123456789/466The bacterial adhesion and biofilm formation on food contact surfaces can lead to the increased in corrosion of equipment surfaces and pipes blockage. Moreover, it can also cause foodborne illness, which results in economic losses, and, especially, in public health problems. The aims of this work were to evaluate the adhesion of Listeria monocytogenes CECT 4031T on the austenitic stainless steel (AISI 304) and ferritic (AISI 430) surfaces implanted with Ag+1 ions; study the biofilm formation of L. monocytogenes (strains 747 and 994) in single and mixed culture with cells of Pseudomonas fluorescens ATCC 27663 on austenitic stainless steel surfaces, AISI 304, finishing #4, in the biofilm and; study the biocontrol of L. monocytogenes 747 in mixed culture with P. fluorescens ATCC 27663 by infection with bacteriophage &#981;IBB PF7A. Ag+1 ions were implanted in austenitic stainless steel, AISI 304, and ferritic surfaces, AISI 430, finishing #2B, 4, 6 and 8, with the energy of 200 keV, and austenitic stainless steel, AISI 304, finish #2B, with the energy of 70 keV. The depth of Ag+1 ions, chemical composition, hydrophobicity (qualitative and quantitative), and roughness for stainless steel surfaces were evaluated by Rutherford backscattering spectrometry (RBS) spectroscopy, X-ray photoelectron (XPS), contact angle and atomic force microscopy, respectively. Qualitatively and quantitatively hydrophobicity for bacterial strains, L. monocytogenes and P. fluorescens, were also evaluated. The technique of fluorescence in situ hybridization of peptide nucleic acids (PNA Fish) was used to study the biofilm formation ability of L. monocytogenes 747 in single or mixed culture with P. fluorescens, before or after infection with bacteriophage- &#981;IBBPF7A. The results showed that Ag+1 ions implanted with energy of 200 keV presented an average depth of 25 nm and, when implanted with energy of 70 keV, these ions were found shallower, with an average depth of 15 nm. Additionally, the XPS analyzes confirmed the presence of silver in the implanted surfaces. There was significant difference (p < 0.05) between the roughness surfaces of stainless steel (Ra and Rz). Ferritic stainless steel, AISI 430, finishing # 4, with Ag+1 ions showed highest roughness and ferritic stainless steel, AISI 430, finishing #8, with and without Ag+1 lowest. After implantation of Ag+1, it was possible to observe a significant reduction on values of the contact angles with water (&#952;w) (p < 0.05) and alterations on the free energy of interaction between identical surfaces immersed in water (&#916;G TOT SWS). Ferritic stainless steel, AISI 430, finishing #8, without Ag+1 ions implanted, showed highest values of hydrophobicity (- 64.67 mJ.m-2). The number of L. monocytogenes CECT 4031T cells adhered proved to be materials dependents (p < 0.05), with lowest values for stainless steel, AISI 304, finishing #2B, with silver implanted at 70 keV (2.63 ± 0.32 log CFU.cm-2). Furthermore, there was no correlation between the number of adhered cells of L. monocytogenes CECT 4031T and the variation of the total free energy of interaction (&#916;G). Important is to emphasize that no direct relationship was observed between the number of adhered cells and the roughness of the surfaces of stainless steel. L. monocytogenes and P. fluorescens cells shown to be hydrophilic, and the greatest variation in total free energy of interaction was observed for P. fluorescens (- 27.91 mJ.m-2). L. monocytogenes 747 and 994, in single culture, were able to adhere at 4 °C and formed biofilms at 25 °C and 37 ºC in stainless steel AISI 304, finishing #4. Moreover, there was significant difference (p < 0.05) in the number of viable cells in single biofilms of P. fluorescens under the tested temperatures measured with scores of 7,26 log CFU.cm-2 ,at 25 ºC, and 5,26 log CFU.cm-2, at 37 ºC. The number of viable bacteria cells measured in planktonic forms or single biofimes decreased (p < 0.05) after contact with the &#981;IBB-PF7A bacteriophage, reaching 5.5 log reduction, after 6 h, and 2.03 log reduction, after 24 h. In mixed biofilms with L. monocytogenes 747, it was also observed a reduction in the number of P. fluorescens viable cells (p < 0.05), after 6 h with phage contact, reaching 5.6 log reduction. However, after 24 h, the reduction in the number of P. fluorescens cells was not significant (p > 0.05) (2.19 log reduction). From this time, there was an increase of population, which can be attributed to bacterial resistance to phage, possibly initiated during planktonic cells lifestyle. Epifluorescence microscopy images allow us to confirm that both L. monocytogenes 747 and P. fluorescens were able to form biofilms on glass surfaces in single and mixed culture at 25 °C. It was also observed that the structure of biofilm of P. fluorescens and L. monocytogenes 747 consists of a monolayer of cells with a mixture of both microorganisms. Important is to highlight that the Ag+1 ion implantation is a causative agent able for reducting the number of adhered cells of L. monocytogenes to stainless steel. In the initial time, phage infection was able to cause a reduction on the number of adhered cells of L. monocytogenes and P. fluorescens in biofilms. So, this work presents itself as an important step in researching new technologies that can be employed to reduce or prevent bacterial adhesion and biofilms formation.A adesão e a formação de biofilme bacterianos em superfícies de contato com alimentos, além de contaminar o produto durante o processamento, o que pode resultar em corrosão de superfícies de equipamentos e bloqueio de tubulações, pode também ocasionar doenças de origem alimentar, o que acarreta em perdas econômicas e, principalmente, em problemas de saúde pública. Os objetivos deste trabalho foram avaliar a capacidade de adesão de Listeria monocytogenes CECT 4031T em superfícies de aço inoxidável austeníticos (AISI 304) e ferríticos (AISI 430) implantadas com íons Ag+1; estudar a formação de biofilmes de L. monocytogenes (estirpes 747 e 994) em cultura simples e mista com células de Pseudomonas fluorescens ATCC 27663 em aço inoxidável austenítico AISI 304, acabamento no 4 e o biocontrole do biofilme de L. monocytogenes 747 em cultura mista com P. fluorescens ATCC 27663 por meio da infecção com bacteriófago &#981;IBB-PF7A. Íons Ag+1 foram implantados em aço inoxidável austenítico AISI 304 e ferrítico AISI 430, acabamentos no 2B, 4, 6 e 8, com a energia de 200 keV, e em aço inoxidável austenítico AISI 304, acabamento no 2B, com a energia de 70 keV. A profundidade dos íons Ag+1, composição química, hidrofobicidade, qualitativa e quantitativa, e rugosidade para as superfícies de aço inoxidável foram avaliadas por espectrometria de retroespalhamento de Rutherford (RBS), espectroscopia fotoeletrônica de raio-X (XPS), ângulo de contato e microscopia de força atômica, respectivamente. Avaliaram-se as hidrofobicidades qualitativa e quantitativa das estirpes bacterianas, L. monocytogenes e P. fluorescens. Utilizou-se a técnica de fluorescência de hibridização in situ de peptídeo de ácidos nucleicos (PNA Fish) para a avaliação do biofilme de L. monocytogenes 747, em cultura simples ou mista com P. fluorescens, antes ou após infecção com bacteriófago &#981;IBB-PF7A. Os íons Ag+1 implantados com energia de 200 keV apresentaram profundidade média de 25 nm e, quando implantados com energia de 70 keV, estes íons encontraram-se mais superficiais, com uma profundidade média de 15 nm. As análises de XPS confirmaram a presença da prata nas superfícies implantadas. Observou-se diferença significativa (p < 0,05) de rugosidade (Ra e Rz) entre as superfícies de aço inoxidável. O aço inoxidável AISI 430, acabamento no 4, com íons Ag+1, apresentou maior rugosidade e o aço inoxidável AISI 430, acabamento no 8, com e sem íons Ag+1, menor. Após a implantação de Ag+1, houve redução significativa (p < 0,05) dos ângulos de contato com a água (&#952;w) e variações da energia livre de interação entre superfícies iguais imersas em água (&#916;G TOT SWS). O aço inoxidável AISI 430, acabamento no 8, sem íons Ag+1 implantados, apresentou maior hidrofobicidade (- 64,67 mJ.m-2). O número de células de L. monocytogenes CECT 4031T aderidas nos materiais avaliados variou significativamente (p < 0,05), com menor valor para o aço inoxidável AISI 304, acabamento no 2B, com prata implantada a 70 keV (2,63 ± 0,32 log CFU.cm-2). Não houve concordância entre o número de células aderidas de L. monocytogenes CECT 4031T e a variação da energia livre total de interação (&#916;G adesão). Não se constatou relação direta entre o número de células aderidas e a rugosidade das superfícies de aço inoxidável. As células de L. monocytogenes e P. fluorescens apresentaram-se hidrofílicas. A maior variação de energia livre total de interação foi observada para P. fluorescens (- 27,91 mJ.m-2). L. monocytogenes 747 e 994, em cultura simples, apresentaram capacidade de adesão a 4 ºC e de formar biofilme a 25 ºC e a 37 ºC em aço inoxidável AISI 304, acabamento no 4. Observou-se que houve diferença significativa (p < 0,05) no número de células viáveis em biofilmes simples de P. fluorescens , nas temperaturas avaliadas, com as contagens de 7,26 log CFU.cm-2 a 25 ºC e a 5,26 log CFU.cm-2 a 37 ºC. O número de células viáveis para as bactérias avaliadas, nas formas planctônicas ou em biofimes simples, diminui (p < 0,05), após contato com o bacteriofago &#981;IBB-PF7A, em 5,5 ciclos logarítmos, após 6 h, e em 2,03 ciclos logarítmos, após 24 h. Houve redução significativa (p < 0,05) no número de células viáveis de P. fluorescens, em biofilme misto com L. monocytogenes 747, após 6 h de contato com bacteriófago (5,6 ciclos logaritmos). Entretanto, a redução do número de células de P. fluorescens (2,19 ciclos logarítmos) não foi significativa (p > 0,05), após 24 h. A partir deste tempo, houve aumento da população, o que foi atribuído à resistência bacteriana ao bacteriófago, possivelmente iniciada em células planctônicas. Nas imagens de microscopia de epifluorescência observou-se que L. monocytogenes 747 e para P. fluorescens aderiu e formou biofilme nas superfícies de vidro, em cultura simples e mistas, a 25 ºC. Observou-se também que a estrutura do biofilme continha células de P. fluorescens e L. monocytogenes 747, com formação de uma monocamada mista. A implantação de íons Ag+1 propiciou redução no número de células aderidas de L. monocytogenes em aço inoxidável. A infecção fágica ocasionou a redução, no tempo inicial, do número de células aderidas de L. monocytogenes e P. fluorescens em biofilmes. Este trabalho mostra-se como um importante passo na pesquisa de novas tecnologias que podem ser empregadas para reduzir ou impedir a adesão e a formação de biofilmes bacterianos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal de ViçosaDoutorado em Ciência e Tecnologia de AlimentosUFVBRCiência de Alimentos; Tecnologia de Alimentos; Engenharia de AlimentosAdesão bacterianaBiofilmeRugosidadeTensão interfacialImplantação de íonsBacterial adhesion, biofilmRoughnessinterfacial tensionIon ImplantationCNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOSImplantação de íons de prata em aço inoxidável e infecção fágica para o controle de adesão e formação de biofilmes bacterianos na indústria de alimentosImplantation of silver ion in stainless steel and phage infection to control of bacterial adhesion and biofilm formation in food industryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf3177105https://locus.ufv.br//bitstream/123456789/466/1/texto%20completo.pdf0bb17995b6b5164a6a03ee24f4ef944bMD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain262720https://locus.ufv.br//bitstream/123456789/466/2/texto%20completo.pdf.txt096312ad2c9139947eb987b9e86769e4MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3803https://locus.ufv.br//bitstream/123456789/466/3/texto%20completo.pdf.jpgcd4cab965892cb80aced227859d16380MD53123456789/4662016-04-06 23:06:51.189oai:locus.ufv.br:123456789/466Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-07T02:06:51LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Implantação de íons de prata em aço inoxidável e infecção fágica para o controle de adesão e formação de biofilmes bacterianos na indústria de alimentos
dc.title.alternative.eng.fl_str_mv Implantation of silver ion in stainless steel and phage infection to control of bacterial adhesion and biofilm formation in food industry
title Implantação de íons de prata em aço inoxidável e infecção fágica para o controle de adesão e formação de biofilmes bacterianos na indústria de alimentos
spellingShingle Implantação de íons de prata em aço inoxidável e infecção fágica para o controle de adesão e formação de biofilmes bacterianos na indústria de alimentos
Novello, Junia Cápua de Lima
Adesão bacteriana
Biofilme
Rugosidade
Tensão interfacial
Implantação de íons
Bacterial adhesion, biofilm
Roughness
interfacial tension
Ion Implantation
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS
title_short Implantação de íons de prata em aço inoxidável e infecção fágica para o controle de adesão e formação de biofilmes bacterianos na indústria de alimentos
title_full Implantação de íons de prata em aço inoxidável e infecção fágica para o controle de adesão e formação de biofilmes bacterianos na indústria de alimentos
title_fullStr Implantação de íons de prata em aço inoxidável e infecção fágica para o controle de adesão e formação de biofilmes bacterianos na indústria de alimentos
title_full_unstemmed Implantação de íons de prata em aço inoxidável e infecção fágica para o controle de adesão e formação de biofilmes bacterianos na indústria de alimentos
title_sort Implantação de íons de prata em aço inoxidável e infecção fágica para o controle de adesão e formação de biofilmes bacterianos na indústria de alimentos
author Novello, Junia Cápua de Lima
author_facet Novello, Junia Cápua de Lima
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/8090582956247122
dc.contributor.author.fl_str_mv Novello, Junia Cápua de Lima
dc.contributor.advisor-co1.fl_str_mv Ferreira, Sukarno Olavo
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786429E5
dc.contributor.advisor-co2.fl_str_mv Coimbra, Jane Sélia dos Reis
dc.contributor.advisor-co2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798752J6
dc.contributor.advisor1.fl_str_mv Andrade, Nélio José de
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788281Y5
dc.contributor.referee1.fl_str_mv Pinto, Cláudia Lúcia de Oliveira
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783521J6
dc.contributor.referee2.fl_str_mv Carvalho, Antônio Fernandes de
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781655T2
dc.contributor.referee3.fl_str_mv Azeredo, Joana Cecília Valente de Rodrigues
contributor_str_mv Ferreira, Sukarno Olavo
Coimbra, Jane Sélia dos Reis
Andrade, Nélio José de
Pinto, Cláudia Lúcia de Oliveira
Carvalho, Antônio Fernandes de
Azeredo, Joana Cecília Valente de Rodrigues
dc.subject.por.fl_str_mv Adesão bacteriana
Biofilme
Rugosidade
Tensão interfacial
Implantação de íons
topic Adesão bacteriana
Biofilme
Rugosidade
Tensão interfacial
Implantação de íons
Bacterial adhesion, biofilm
Roughness
interfacial tension
Ion Implantation
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS
dc.subject.eng.fl_str_mv Bacterial adhesion, biofilm
Roughness
interfacial tension
Ion Implantation
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS
description The bacterial adhesion and biofilm formation on food contact surfaces can lead to the increased in corrosion of equipment surfaces and pipes blockage. Moreover, it can also cause foodborne illness, which results in economic losses, and, especially, in public health problems. The aims of this work were to evaluate the adhesion of Listeria monocytogenes CECT 4031T on the austenitic stainless steel (AISI 304) and ferritic (AISI 430) surfaces implanted with Ag+1 ions; study the biofilm formation of L. monocytogenes (strains 747 and 994) in single and mixed culture with cells of Pseudomonas fluorescens ATCC 27663 on austenitic stainless steel surfaces, AISI 304, finishing #4, in the biofilm and; study the biocontrol of L. monocytogenes 747 in mixed culture with P. fluorescens ATCC 27663 by infection with bacteriophage &#981;IBB PF7A. Ag+1 ions were implanted in austenitic stainless steel, AISI 304, and ferritic surfaces, AISI 430, finishing #2B, 4, 6 and 8, with the energy of 200 keV, and austenitic stainless steel, AISI 304, finish #2B, with the energy of 70 keV. The depth of Ag+1 ions, chemical composition, hydrophobicity (qualitative and quantitative), and roughness for stainless steel surfaces were evaluated by Rutherford backscattering spectrometry (RBS) spectroscopy, X-ray photoelectron (XPS), contact angle and atomic force microscopy, respectively. Qualitatively and quantitatively hydrophobicity for bacterial strains, L. monocytogenes and P. fluorescens, were also evaluated. The technique of fluorescence in situ hybridization of peptide nucleic acids (PNA Fish) was used to study the biofilm formation ability of L. monocytogenes 747 in single or mixed culture with P. fluorescens, before or after infection with bacteriophage- &#981;IBBPF7A. The results showed that Ag+1 ions implanted with energy of 200 keV presented an average depth of 25 nm and, when implanted with energy of 70 keV, these ions were found shallower, with an average depth of 15 nm. Additionally, the XPS analyzes confirmed the presence of silver in the implanted surfaces. There was significant difference (p < 0.05) between the roughness surfaces of stainless steel (Ra and Rz). Ferritic stainless steel, AISI 430, finishing # 4, with Ag+1 ions showed highest roughness and ferritic stainless steel, AISI 430, finishing #8, with and without Ag+1 lowest. After implantation of Ag+1, it was possible to observe a significant reduction on values of the contact angles with water (&#952;w) (p < 0.05) and alterations on the free energy of interaction between identical surfaces immersed in water (&#916;G TOT SWS). Ferritic stainless steel, AISI 430, finishing #8, without Ag+1 ions implanted, showed highest values of hydrophobicity (- 64.67 mJ.m-2). The number of L. monocytogenes CECT 4031T cells adhered proved to be materials dependents (p < 0.05), with lowest values for stainless steel, AISI 304, finishing #2B, with silver implanted at 70 keV (2.63 ± 0.32 log CFU.cm-2). Furthermore, there was no correlation between the number of adhered cells of L. monocytogenes CECT 4031T and the variation of the total free energy of interaction (&#916;G). Important is to emphasize that no direct relationship was observed between the number of adhered cells and the roughness of the surfaces of stainless steel. L. monocytogenes and P. fluorescens cells shown to be hydrophilic, and the greatest variation in total free energy of interaction was observed for P. fluorescens (- 27.91 mJ.m-2). L. monocytogenes 747 and 994, in single culture, were able to adhere at 4 °C and formed biofilms at 25 °C and 37 ºC in stainless steel AISI 304, finishing #4. Moreover, there was significant difference (p < 0.05) in the number of viable cells in single biofilms of P. fluorescens under the tested temperatures measured with scores of 7,26 log CFU.cm-2 ,at 25 ºC, and 5,26 log CFU.cm-2, at 37 ºC. The number of viable bacteria cells measured in planktonic forms or single biofimes decreased (p < 0.05) after contact with the &#981;IBB-PF7A bacteriophage, reaching 5.5 log reduction, after 6 h, and 2.03 log reduction, after 24 h. In mixed biofilms with L. monocytogenes 747, it was also observed a reduction in the number of P. fluorescens viable cells (p < 0.05), after 6 h with phage contact, reaching 5.6 log reduction. However, after 24 h, the reduction in the number of P. fluorescens cells was not significant (p > 0.05) (2.19 log reduction). From this time, there was an increase of population, which can be attributed to bacterial resistance to phage, possibly initiated during planktonic cells lifestyle. Epifluorescence microscopy images allow us to confirm that both L. monocytogenes 747 and P. fluorescens were able to form biofilms on glass surfaces in single and mixed culture at 25 °C. It was also observed that the structure of biofilm of P. fluorescens and L. monocytogenes 747 consists of a monolayer of cells with a mixture of both microorganisms. Important is to highlight that the Ag+1 ion implantation is a causative agent able for reducting the number of adhered cells of L. monocytogenes to stainless steel. In the initial time, phage infection was able to cause a reduction on the number of adhered cells of L. monocytogenes and P. fluorescens in biofilms. So, this work presents itself as an important step in researching new technologies that can be employed to reduce or prevent bacterial adhesion and biofilms formation.
publishDate 2012
dc.date.issued.fl_str_mv 2012-05-02
dc.date.available.fl_str_mv 2013-12-10
2015-03-26T12:25:09Z
dc.date.accessioned.fl_str_mv 2015-03-26T12:25:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NOVELLO, Junia Cápua de Lima. Implantation of silver ion in stainless steel and phage infection to control of bacterial adhesion and biofilm formation in food industry. 2012. 134 f. Tese (Doutorado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2012.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/466
identifier_str_mv NOVELLO, Junia Cápua de Lima. Implantation of silver ion in stainless steel and phage infection to control of bacterial adhesion and biofilm formation in food industry. 2012. 134 f. Tese (Doutorado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2012.
url http://locus.ufv.br/handle/123456789/466
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Doutorado em Ciência e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/466/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/466/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/466/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 0bb17995b6b5164a6a03ee24f4ef944b
096312ad2c9139947eb987b9e86769e4
cd4cab965892cb80aced227859d16380
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1794528690188582912