Desenvolvimento de nanocatalisadores contendo ouro na forma iônica, nanopartículas e clusters dispersos na superfície de óxidos inorgânicos

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Didó, Cezar Augusto
Orientador(a): Benvenutti, Edilson Valmir
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/245276
Resumo: No presente trabalho, foram desenvolvidos materiais nanoestruturados com diferentes composições, morfologias e texturas para atuarem como suportes de espécies catalíticas de ouro, utilizando-se sílica, magnetita e titânia, como matrizes. Em um primeiro estudo foram desenvolvidas duas séries de materiais a base de sílica e magnetita de maneira a criar dois ambientes distintos para deposição de nanopartículas de ouro. Em uma das séries foram criados nanoconteiners para proporcionar ambiente confinado. Para deposição de nanopartículas foi desenvolvida uma estratégia de síntese in-situ, no interior dos nanoconteiners. A diferença nos ambientes confinado e não confinados resultou em diferentes tamanhos de nanopartículas de ouro. O desempenho catalítico desses materiais foi avaliado frente à redução de p-nitrofenol e ambos materiais tiveram o mesmo desempenho catalítico, porém o reciclo do material contendo ouro confinado se mostrou mais efetivo. Em um segundo estudo foi desenvolvido um xerogel de sílica que foi organofuncionalizado com um silsesquioxano iônico. Esse xerogel modificado foi utilizado para ancorar complexo AuCl4- de forma altamente dispersa, via processo de troca iônica. Esse material foi utilizado como catalisador em reações de homoacoplamento de alcinos terminais, utilizando-se somente 0,22 mol% de catalisador ouro. Por fim, em um terceiro estudo, nanotubos de titânia com alta área superficial, na fase anatásio, foram sintetizados. Os nanotubos de titânia foram utilizados como suporte para deposição de espécies de ouro. Foi desenvolvida uma nova estratégia que envolveu o uso de pequenas quantidades de ouro e sua redução em alta temperatura, sob hidrogênio, para obter nanopartículas pequenas e até mesmo clusters com tamanho de 8,9 e 8,7 Å de ouro na superfície dos nanotubos de anatásio. Todos os materiais foram caracterizados usando-se variadas técnicas, como termogravimetria, isotermas de adsorção-dessorção de nitrogênio, espectroscopia UV-Vis, difração de raios X, microscopia eletrônica de transmissão, microscopia eletrônica de transmissão por varredura no modo campo claro e campo escuro anular, entre outros.
id URGS_66f968200ee4a53d3fcc780ad55981e8
oai_identifier_str oai:www.lume.ufrgs.br:10183/245276
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Didó, Cezar AugustoBenvenutti, Edilson Valmir2022-07-22T04:53:26Z2022http://hdl.handle.net/10183/245276001145940No presente trabalho, foram desenvolvidos materiais nanoestruturados com diferentes composições, morfologias e texturas para atuarem como suportes de espécies catalíticas de ouro, utilizando-se sílica, magnetita e titânia, como matrizes. Em um primeiro estudo foram desenvolvidas duas séries de materiais a base de sílica e magnetita de maneira a criar dois ambientes distintos para deposição de nanopartículas de ouro. Em uma das séries foram criados nanoconteiners para proporcionar ambiente confinado. Para deposição de nanopartículas foi desenvolvida uma estratégia de síntese in-situ, no interior dos nanoconteiners. A diferença nos ambientes confinado e não confinados resultou em diferentes tamanhos de nanopartículas de ouro. O desempenho catalítico desses materiais foi avaliado frente à redução de p-nitrofenol e ambos materiais tiveram o mesmo desempenho catalítico, porém o reciclo do material contendo ouro confinado se mostrou mais efetivo. Em um segundo estudo foi desenvolvido um xerogel de sílica que foi organofuncionalizado com um silsesquioxano iônico. Esse xerogel modificado foi utilizado para ancorar complexo AuCl4- de forma altamente dispersa, via processo de troca iônica. Esse material foi utilizado como catalisador em reações de homoacoplamento de alcinos terminais, utilizando-se somente 0,22 mol% de catalisador ouro. Por fim, em um terceiro estudo, nanotubos de titânia com alta área superficial, na fase anatásio, foram sintetizados. Os nanotubos de titânia foram utilizados como suporte para deposição de espécies de ouro. Foi desenvolvida uma nova estratégia que envolveu o uso de pequenas quantidades de ouro e sua redução em alta temperatura, sob hidrogênio, para obter nanopartículas pequenas e até mesmo clusters com tamanho de 8,9 e 8,7 Å de ouro na superfície dos nanotubos de anatásio. Todos os materiais foram caracterizados usando-se variadas técnicas, como termogravimetria, isotermas de adsorção-dessorção de nitrogênio, espectroscopia UV-Vis, difração de raios X, microscopia eletrônica de transmissão, microscopia eletrônica de transmissão por varredura no modo campo claro e campo escuro anular, entre outros.In the present work, nanostructured materials based on silica, magnetite and titania, with different composition, morphology and texture were developed to be applied as support for gold species with catalytic activities. In a first study, two series of materials based on silica and magnetite, with distinct environments, were developed to be decorated with gold nanoparticles. In one of these series, nanoconteiners were created to provide confined environment. A strategy was developed for in situ gold nanoparticles synthesis, inside of the nanoconteiners. The difference in confined and unconfined environments resulted in different sizes of gold nanoparticles. The catalytic performance was evaluated on the reduction of p-nitrophenol and both materials presented the same catalytic performance, however the recycling of the material containing confined gold was more effective. Secondly, a xerogel of silica was organofunctionalized with ionic silsesquioxane to be used as support to immobilize AuCl4- by ion-exchange process, in a highly dispersed way. This material was applied as catalyst in the coupling reactions of 1,3-diynes, using only 0.22 mol% of gold catalyst. Finally, nanotubes of titania in the anatase phase, with high surface area, were synthesized. The nanotubes were used as support for gold species. A new strategy was developed to obtain small gold nanoparticles and even gold clusters, with size of 8.9 and 8.7 Å, on titania surface. The strategy involves the use of very small quantity of gold and its reduction at high temperature, under H2 atmosphere. The materials were characterized by several techniques, such as thermogravimetric analysis, nitrogen adsorption-desorption isotherms, UV-Vis spectroscopy, X-ray diffraction, transmission electron microscopy, scanning transmission electron microscopy in bright-field and annular dark-field imaging, among others.application/pdfporMagnetitaNanopartículas de ouroNanotubosÓxido de titânioClusterNanocatalystMagnetiteTitania nanotubesGold nanoparticlesGold clustersDesenvolvimento de nanocatalisadores contendo ouro na forma iônica, nanopartículas e clusters dispersos na superfície de óxidos inorgânicosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de QuímicaPrograma de Pós-Graduação em QuímicaPorto Alegre, BR-RS2022doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001145940.pdf.txt001145940.pdf.txtExtracted Texttext/plain221796http://www.lume.ufrgs.br/bitstream/10183/245276/2/001145940.pdf.txt0182211e1b8efd1037c46a66c8f864aeMD52ORIGINAL001145940.pdfTexto completoapplication/pdf12777325http://www.lume.ufrgs.br/bitstream/10183/245276/1/001145940.pdf5d3fe81d9f0edb846f8d79cb70c01edfMD5110183/2452762022-07-23 05:02:49.954934oai:www.lume.ufrgs.br:10183/245276Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532022-07-23T08:02:49Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Desenvolvimento de nanocatalisadores contendo ouro na forma iônica, nanopartículas e clusters dispersos na superfície de óxidos inorgânicos
title Desenvolvimento de nanocatalisadores contendo ouro na forma iônica, nanopartículas e clusters dispersos na superfície de óxidos inorgânicos
spellingShingle Desenvolvimento de nanocatalisadores contendo ouro na forma iônica, nanopartículas e clusters dispersos na superfície de óxidos inorgânicos
Didó, Cezar Augusto
Magnetita
Nanopartículas de ouro
Nanotubos
Óxido de titânio
Cluster
Nanocatalyst
Magnetite
Titania nanotubes
Gold nanoparticles
Gold clusters
title_short Desenvolvimento de nanocatalisadores contendo ouro na forma iônica, nanopartículas e clusters dispersos na superfície de óxidos inorgânicos
title_full Desenvolvimento de nanocatalisadores contendo ouro na forma iônica, nanopartículas e clusters dispersos na superfície de óxidos inorgânicos
title_fullStr Desenvolvimento de nanocatalisadores contendo ouro na forma iônica, nanopartículas e clusters dispersos na superfície de óxidos inorgânicos
title_full_unstemmed Desenvolvimento de nanocatalisadores contendo ouro na forma iônica, nanopartículas e clusters dispersos na superfície de óxidos inorgânicos
title_sort Desenvolvimento de nanocatalisadores contendo ouro na forma iônica, nanopartículas e clusters dispersos na superfície de óxidos inorgânicos
author Didó, Cezar Augusto
author_facet Didó, Cezar Augusto
author_role author
dc.contributor.author.fl_str_mv Didó, Cezar Augusto
dc.contributor.advisor1.fl_str_mv Benvenutti, Edilson Valmir
contributor_str_mv Benvenutti, Edilson Valmir
dc.subject.por.fl_str_mv Magnetita
Nanopartículas de ouro
Nanotubos
Óxido de titânio
Cluster
topic Magnetita
Nanopartículas de ouro
Nanotubos
Óxido de titânio
Cluster
Nanocatalyst
Magnetite
Titania nanotubes
Gold nanoparticles
Gold clusters
dc.subject.eng.fl_str_mv Nanocatalyst
Magnetite
Titania nanotubes
Gold nanoparticles
Gold clusters
description No presente trabalho, foram desenvolvidos materiais nanoestruturados com diferentes composições, morfologias e texturas para atuarem como suportes de espécies catalíticas de ouro, utilizando-se sílica, magnetita e titânia, como matrizes. Em um primeiro estudo foram desenvolvidas duas séries de materiais a base de sílica e magnetita de maneira a criar dois ambientes distintos para deposição de nanopartículas de ouro. Em uma das séries foram criados nanoconteiners para proporcionar ambiente confinado. Para deposição de nanopartículas foi desenvolvida uma estratégia de síntese in-situ, no interior dos nanoconteiners. A diferença nos ambientes confinado e não confinados resultou em diferentes tamanhos de nanopartículas de ouro. O desempenho catalítico desses materiais foi avaliado frente à redução de p-nitrofenol e ambos materiais tiveram o mesmo desempenho catalítico, porém o reciclo do material contendo ouro confinado se mostrou mais efetivo. Em um segundo estudo foi desenvolvido um xerogel de sílica que foi organofuncionalizado com um silsesquioxano iônico. Esse xerogel modificado foi utilizado para ancorar complexo AuCl4- de forma altamente dispersa, via processo de troca iônica. Esse material foi utilizado como catalisador em reações de homoacoplamento de alcinos terminais, utilizando-se somente 0,22 mol% de catalisador ouro. Por fim, em um terceiro estudo, nanotubos de titânia com alta área superficial, na fase anatásio, foram sintetizados. Os nanotubos de titânia foram utilizados como suporte para deposição de espécies de ouro. Foi desenvolvida uma nova estratégia que envolveu o uso de pequenas quantidades de ouro e sua redução em alta temperatura, sob hidrogênio, para obter nanopartículas pequenas e até mesmo clusters com tamanho de 8,9 e 8,7 Å de ouro na superfície dos nanotubos de anatásio. Todos os materiais foram caracterizados usando-se variadas técnicas, como termogravimetria, isotermas de adsorção-dessorção de nitrogênio, espectroscopia UV-Vis, difração de raios X, microscopia eletrônica de transmissão, microscopia eletrônica de transmissão por varredura no modo campo claro e campo escuro anular, entre outros.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-07-22T04:53:26Z
dc.date.issued.fl_str_mv 2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/245276
dc.identifier.nrb.pt_BR.fl_str_mv 001145940
url http://hdl.handle.net/10183/245276
identifier_str_mv 001145940
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/245276/2/001145940.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/245276/1/001145940.pdf
bitstream.checksum.fl_str_mv 0182211e1b8efd1037c46a66c8f864ae
5d3fe81d9f0edb846f8d79cb70c01edf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1797065189019877376