Methodologies for designing, optimizing, and evaluating possible unconventional aircraft configurations for future civil aviation

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Pedro David Bravo Mosquera
Orientador(a): Fernando Martini Catalano
Banca de defesa: Odenir de Almeida, Joao Luiz Filgueiras de Azevedo, Ney Rafael Secco, Luis Gustavo Trapp
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade de São Paulo
Programa de Pós-Graduação: Engenharia Mecânica
Departamento: Não Informado pela instituição
País: BR
Link de acesso: https://doi.org/10.11606/T.18.2022.tde-19122022-155409
Resumo: Due to technological evolution and the development of several environmental aerospace projects, the aeronautical community has been implementing advanced design strategies, aiming to find next-generation configurations that allow mitigating the undesirable impact of aircraft on the environment. Unconventional solutions have attracted the attention of designers, and several aircraft concepts have been proposed in order to achieve ambitious goals. Given the lack of significant design experience with unconventional aircraft, Multidisciplinary Design Optimization (MDO) frameworks enable to understand the impact of various technologies, obtaining reductions in energy use per passenger-kilometer beyond that provided by the configuration itself. In this thesis, multifidelity and multidisciplinary optimization methodologies have been applied towards designing a next-generation commercial airliner, which combines a Box-Wing configuration with Boundary Layer Ingestion (BLI) engines. This project presents four fundamental objectives: (i) To understand the current design issues, methods, and evolving trends of unconventional configurations. This is performed through a compilation of information in the form of a state- of-the-art literature review. (ii) To develop a low-fidelity MDO method to determine the main geometric, aerodynamic, stability, propulsion and performance characteristics of the aircraft, based on its design requirements and constraints. (iii) To carry out Computational Fluid Dynamics (CFD) simulations and wind-tunnel experiments on a scale-model of the aircraft, in order to perform a back-to-back analysis of non-boundary layer ingesting and boundary layer ingesting versions of the aircraft. (iv) To implement a high-fidelity Aerodynamic Shape Optimization method for the Box-Wing concept based on Reynolds-Averaged Navier-Stokes (RANS) equations. The completion of the research effort led to understand the potential benefits of the different technologies implemented on the aircraft at different levels of physical fidelity. Such information is believed to be important in determining whether a Box-wing aircraft powered by a BLI propulsion system can fulfil future aviation demands, providing also interesting and very encouraging results for further development.
id USP_1a1154b0dd72e63a8a4de7f9dd8a9ea8
oai_identifier_str oai:teses.usp.br:tde-19122022-155409
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis Methodologies for designing, optimizing, and evaluating possible unconventional aircraft configurations for future civil aviation Metodologias para projetar, otimizar e avaliar possíveis configurações de aeronaves não convencionais para o futuro da aviação civil 2022-10-13Fernando Martini CatalanoOdenir de AlmeidaJoao Luiz Filgueiras de AzevedoNey Rafael SeccoLuis Gustavo TrappPedro David Bravo MosqueraUniversidade de São PauloEngenharia MecânicaUSPBR Aerodynamic Shape Optimization Boundary Layer Ingestion Box-Wing configuration Computational Fluid Dynamics Configuração Box-Wing Dinâmica dos Fluidos Computacional Experimentos em túnel de vento Ingestão de camada limite Multidisciplinary Design Optimization Otimização de forma aerodinâmica Otimização multidisciplinar de projeto Wind-tunnel experiments Due to technological evolution and the development of several environmental aerospace projects, the aeronautical community has been implementing advanced design strategies, aiming to find next-generation configurations that allow mitigating the undesirable impact of aircraft on the environment. Unconventional solutions have attracted the attention of designers, and several aircraft concepts have been proposed in order to achieve ambitious goals. Given the lack of significant design experience with unconventional aircraft, Multidisciplinary Design Optimization (MDO) frameworks enable to understand the impact of various technologies, obtaining reductions in energy use per passenger-kilometer beyond that provided by the configuration itself. In this thesis, multifidelity and multidisciplinary optimization methodologies have been applied towards designing a next-generation commercial airliner, which combines a Box-Wing configuration with Boundary Layer Ingestion (BLI) engines. This project presents four fundamental objectives: (i) To understand the current design issues, methods, and evolving trends of unconventional configurations. This is performed through a compilation of information in the form of a state- of-the-art literature review. (ii) To develop a low-fidelity MDO method to determine the main geometric, aerodynamic, stability, propulsion and performance characteristics of the aircraft, based on its design requirements and constraints. (iii) To carry out Computational Fluid Dynamics (CFD) simulations and wind-tunnel experiments on a scale-model of the aircraft, in order to perform a back-to-back analysis of non-boundary layer ingesting and boundary layer ingesting versions of the aircraft. (iv) To implement a high-fidelity Aerodynamic Shape Optimization method for the Box-Wing concept based on Reynolds-Averaged Navier-Stokes (RANS) equations. The completion of the research effort led to understand the potential benefits of the different technologies implemented on the aircraft at different levels of physical fidelity. Such information is believed to be important in determining whether a Box-wing aircraft powered by a BLI propulsion system can fulfil future aviation demands, providing also interesting and very encouraging results for further development. Devido à evolução tecnológica e ao desenvolvimento de diversos projetos aeroespaciais ambientais, a comunidade aeronáutica vem implementando estratégias avançadas de projeto, visando encontrar configurações de próxima geração que permitam mitigar o impacto indesejável dos aviões no ambiente. Soluções não convencionais têm atraído a atenção de projetistas, e vários conceitos de aeronaves têm sido propostos para atingir metas ambiciosas. Dada a falta de experiência em projeto de aeronaves não convencionais, metodologias de otimização de projeto multidisciplinar (MDO) permitem entender o impacto de várias tecnologias, obtendo reduções no consumo de energia por passageiro-quilômetro além daquela proporcionada apenas pela configuração. Nesta tese, metodologias de otimização multifidelidade e multidisciplinar foram aplicadas para projetar uma aeronave comercial de próxima geração, que combina uma configuração Box-Wing com um sistema de propulsão por ingestão de camada limite (BLI). Este projeto tem quatro objetivos fundamentais: (i) Compreender as atuais questões de projeto, metodologias, e tendências em evolução de aeronaves não convencionais. Isto foi realizado através de uma compilação de informação na forma de revisão de literatura. (ii) Desenvolver um método de otimização de projeto multidisciplinar de baixa fidelidade para determinar as principais características geométricas, aerodinâmicas, de estabilidade, propulsão e desempenho da aeronave, com base em seus requisitos de projeto e restrições. (iii) Realizar simulações de dinâmica de fluidos computacional (CFD) e experimentos em túnel de vento usando um modelo a escala da aeronave, a fim de realizar uma análise comparativa entre duas versões da mesma, sendo uma com ingestão de camada limite e outra sem ingestão de camada limite. (iv) Implementar um método de otimização de forma aerodinâmica de alta fidelidade para o conceito Box-Wing baseado nas equações de Reynolds- Averaged Navier-Stokes (RANS). A conclusão do esforço de pesquisa permitiu compreender os benefícios potenciais das diferentes tecnologias implementadas na aeronave em diferentes níveis de fidelidade física. Espera-se que tais dados sejam úteis na interpretação de que uma aeronave Box-wing acoplada a um sistema de propulsão BLI possa atender às demandas da aviação futura, fornecendo também resultados interessantes e muito encorajadores para o desenvolvimento de trabalhos futuros. https://doi.org/10.11606/T.18.2022.tde-19122022-155409info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T19:28:16Zoai:teses.usp.br:tde-19122022-155409Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-01-05T19:44:21Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.en.fl_str_mv Methodologies for designing, optimizing, and evaluating possible unconventional aircraft configurations for future civil aviation
dc.title.alternative.pt.fl_str_mv Metodologias para projetar, otimizar e avaliar possíveis configurações de aeronaves não convencionais para o futuro da aviação civil
title Methodologies for designing, optimizing, and evaluating possible unconventional aircraft configurations for future civil aviation
spellingShingle Methodologies for designing, optimizing, and evaluating possible unconventional aircraft configurations for future civil aviation
Pedro David Bravo Mosquera
title_short Methodologies for designing, optimizing, and evaluating possible unconventional aircraft configurations for future civil aviation
title_full Methodologies for designing, optimizing, and evaluating possible unconventional aircraft configurations for future civil aviation
title_fullStr Methodologies for designing, optimizing, and evaluating possible unconventional aircraft configurations for future civil aviation
title_full_unstemmed Methodologies for designing, optimizing, and evaluating possible unconventional aircraft configurations for future civil aviation
title_sort Methodologies for designing, optimizing, and evaluating possible unconventional aircraft configurations for future civil aviation
author Pedro David Bravo Mosquera
author_facet Pedro David Bravo Mosquera
author_role author
dc.contributor.advisor1.fl_str_mv Fernando Martini Catalano
dc.contributor.referee1.fl_str_mv Odenir de Almeida
dc.contributor.referee2.fl_str_mv Joao Luiz Filgueiras de Azevedo
dc.contributor.referee3.fl_str_mv Ney Rafael Secco
dc.contributor.referee4.fl_str_mv Luis Gustavo Trapp
dc.contributor.author.fl_str_mv Pedro David Bravo Mosquera
contributor_str_mv Fernando Martini Catalano
Odenir de Almeida
Joao Luiz Filgueiras de Azevedo
Ney Rafael Secco
Luis Gustavo Trapp
description Due to technological evolution and the development of several environmental aerospace projects, the aeronautical community has been implementing advanced design strategies, aiming to find next-generation configurations that allow mitigating the undesirable impact of aircraft on the environment. Unconventional solutions have attracted the attention of designers, and several aircraft concepts have been proposed in order to achieve ambitious goals. Given the lack of significant design experience with unconventional aircraft, Multidisciplinary Design Optimization (MDO) frameworks enable to understand the impact of various technologies, obtaining reductions in energy use per passenger-kilometer beyond that provided by the configuration itself. In this thesis, multifidelity and multidisciplinary optimization methodologies have been applied towards designing a next-generation commercial airliner, which combines a Box-Wing configuration with Boundary Layer Ingestion (BLI) engines. This project presents four fundamental objectives: (i) To understand the current design issues, methods, and evolving trends of unconventional configurations. This is performed through a compilation of information in the form of a state- of-the-art literature review. (ii) To develop a low-fidelity MDO method to determine the main geometric, aerodynamic, stability, propulsion and performance characteristics of the aircraft, based on its design requirements and constraints. (iii) To carry out Computational Fluid Dynamics (CFD) simulations and wind-tunnel experiments on a scale-model of the aircraft, in order to perform a back-to-back analysis of non-boundary layer ingesting and boundary layer ingesting versions of the aircraft. (iv) To implement a high-fidelity Aerodynamic Shape Optimization method for the Box-Wing concept based on Reynolds-Averaged Navier-Stokes (RANS) equations. The completion of the research effort led to understand the potential benefits of the different technologies implemented on the aircraft at different levels of physical fidelity. Such information is believed to be important in determining whether a Box-wing aircraft powered by a BLI propulsion system can fulfil future aviation demands, providing also interesting and very encouraging results for further development.
publishDate 2022
dc.date.issued.fl_str_mv 2022-10-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/T.18.2022.tde-19122022-155409
url https://doi.org/10.11606/T.18.2022.tde-19122022-155409
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Engenharia Mecânica
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1786376966124863488