Antimicrobial photodynamic inactivation mediated by methylene blue: Analysis of inactivation kinetics and biochemical mechanisms

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Caetano Padial Sabino
Orientador(a): Nilton Erbet Lincopan Huenuman
Banca de defesa: Michael Richard Hamblin, Jorge Luiz Mello Sampaio, Mark Wainwright
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade de São Paulo
Programa de Pós-Graduação: Farmácia (Análise Clínicas)
Departamento: Não Informado pela instituição
País: BR
Link de acesso: https://doi.org/10.11606/T.9.2021.tde-05082021-094159
Resumo: The widespread use of antimicrobial chemotherapy in medicine and livestock production imposed an evolutive selection of drug-resistant strains worldwide. As a result, the effectiveness of our current antimicrobial armamentarium is constantly being reduced to alarming levels. Therefore, novel antimicrobial therapeutic strategies are urgently needed. Antimicrobial photodynamic therapy (APDT) comes to this scenario as a powerful tool to counteract the emergence of microbial drug-resistance. Its mechanisms of action are based on simultaneous oxidative damage of multiple targets and, therefore, it is much less likely to allow any type of microbial resistance. Therefore, the objectives of this study were focused into establishing 1) a mathematical tool to allow precise analysis of microbial photoinactivation; 2) a broad analysis of APDT effectiveness against global priority drug-resistant pathogens; 3) inhibition of ßlactamase enzymes; and 4) how the biochemical mechanisms of APDT avoid emergence of resistance. The main results obtained through the investigation led by this thesis were divided into 4 scientific articles regarding each of the above-mentioned objectives. In summary, we discovered that 1) a power-law function can precisely fit all microbial inactivation kinetics data and provide insightful information of tolerance factors and lethal doses; 2) there is no correlation between drug-resistance and APDT sensitivity, i.e., extensively drug resistant microorganisms are killed in the same kinetics as drug-sensitive controls; 3) β-lactamases are very sensitive to photodynamic inhibition; 4) biochemical mechanisms of APDT promote oxidative damages to external cell membranes, DNA and proteins whereas the main cause of microbial death seems to be directly associated with protein degradation. Thus, we conclude that APDT is effective against a broad-spectrum of pathogens and has minimum chances of promoting resistance mechanisms.
id USP_ac0e3a22af44ea8b063ae369fb6d31ac
oai_identifier_str oai:teses.usp.br:tde-05082021-094159
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis Antimicrobial photodynamic inactivation mediated by methylene blue: Analysis of inactivation kinetics and biochemical mechanisms Inativação fotodinâmica antimicrobiana mediada por azul de metileno: Análises de cinética de inativação e mecanismos bioquímicos 2021-04-01Nilton Erbet Lincopan HuenumanMartha Simões RibeiroMichael Richard HamblinJorge Luiz Mello SampaioMark WainwrightCaetano Padial SabinoUniversidade de São PauloFarmácia (Análise Clínicas)USPBR Azul de Metileno Bactéria Fotoinativação Fotoquimioterapia Fungo Resistência bacteriana Terapia fotodinâmica antimicrobiana (TFDA) The widespread use of antimicrobial chemotherapy in medicine and livestock production imposed an evolutive selection of drug-resistant strains worldwide. As a result, the effectiveness of our current antimicrobial armamentarium is constantly being reduced to alarming levels. Therefore, novel antimicrobial therapeutic strategies are urgently needed. Antimicrobial photodynamic therapy (APDT) comes to this scenario as a powerful tool to counteract the emergence of microbial drug-resistance. Its mechanisms of action are based on simultaneous oxidative damage of multiple targets and, therefore, it is much less likely to allow any type of microbial resistance. Therefore, the objectives of this study were focused into establishing 1) a mathematical tool to allow precise analysis of microbial photoinactivation; 2) a broad analysis of APDT effectiveness against global priority drug-resistant pathogens; 3) inhibition of ßlactamase enzymes; and 4) how the biochemical mechanisms of APDT avoid emergence of resistance. The main results obtained through the investigation led by this thesis were divided into 4 scientific articles regarding each of the above-mentioned objectives. In summary, we discovered that 1) a power-law function can precisely fit all microbial inactivation kinetics data and provide insightful information of tolerance factors and lethal doses; 2) there is no correlation between drug-resistance and APDT sensitivity, i.e., extensively drug resistant microorganisms are killed in the same kinetics as drug-sensitive controls; 3) β-lactamases are very sensitive to photodynamic inhibition; 4) biochemical mechanisms of APDT promote oxidative damages to external cell membranes, DNA and proteins whereas the main cause of microbial death seems to be directly associated with protein degradation. Thus, we conclude that APDT is effective against a broad-spectrum of pathogens and has minimum chances of promoting resistance mechanisms. O amplo uso da quimioterapia antimicrobiana impôs uma seleção evolutiva de cepas resistentes a medicamentos. Como resultado, a eficácia dos fármacos antimicrobianos tem sido reduzida a níveis alarmantes. Portanto, novas estratégias terapêuticas antimicrobianas são urgentemente necessárias. A terapia fotodinâmica antimicrobiana (TFDA) entra neste cenário como uma ferramenta poderosa para combater a resistência microbiana. Seus mecanismos de ação são baseados no dano oxidativo sobre múltiplos alvos e, portanto, é muito menos provável que permita o surgimento de qualquer tipo de resistência. Os objetivos deste estudo foram focados ao estabelecimento de 1) modelo matemático para análise precisa da fotoinativação microbiana; 2) ampla análise da eficácia da TFDA contra patógenos resistentes a fármacos antimicrobianos de prioridade global; 3) inibição de ß-lactamases por TFDA; e 4) como os mecanismos bioquímicos da TFDA evitam o surgimento de resistência. Os principais resultados obtidos através da investigação conduzida por esta tese foram divididos em 4 artigos científicos. Em resumo, descobrimos que 1) uma função de lei de potência pode ajustar com precisão todos os dados de cinética de inativação microbiana e fornecer informações detalhadas sobre fatores de tolerância e doses letais; 2) não há correlação entre resistência à quimioterapia antimicrobiana e sensibilidade à TFDA, isto é, cepas extensivamente resistentes aos antimicrobianos são inativadas sob a mesma cinética que controles sensíveis aos antimicrobianos; 3) β-lactamases são altamente sensíveis à inibição fotodinâmica; 4) os mecanismos bioquímicos da TFDA promovem danos oxidativos às membranas celulares e DNA, porém, a principal causa de morte microbiana é diretamente associada à degradação das proteínas. Assim, concluímos que a TFDA é eficaz contra um amplo espectro de patógenos e tem chances mínimas de promover mecanismos de resistência. https://doi.org/10.11606/T.9.2021.tde-05082021-094159info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T18:16:29Zoai:teses.usp.br:tde-05082021-094159Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-08-13T13:57:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.en.fl_str_mv Antimicrobial photodynamic inactivation mediated by methylene blue: Analysis of inactivation kinetics and biochemical mechanisms
dc.title.alternative.en.fl_str_mv Inativação fotodinâmica antimicrobiana mediada por azul de metileno: Análises de cinética de inativação e mecanismos bioquímicos
title Antimicrobial photodynamic inactivation mediated by methylene blue: Analysis of inactivation kinetics and biochemical mechanisms
spellingShingle Antimicrobial photodynamic inactivation mediated by methylene blue: Analysis of inactivation kinetics and biochemical mechanisms
Caetano Padial Sabino
title_short Antimicrobial photodynamic inactivation mediated by methylene blue: Analysis of inactivation kinetics and biochemical mechanisms
title_full Antimicrobial photodynamic inactivation mediated by methylene blue: Analysis of inactivation kinetics and biochemical mechanisms
title_fullStr Antimicrobial photodynamic inactivation mediated by methylene blue: Analysis of inactivation kinetics and biochemical mechanisms
title_full_unstemmed Antimicrobial photodynamic inactivation mediated by methylene blue: Analysis of inactivation kinetics and biochemical mechanisms
title_sort Antimicrobial photodynamic inactivation mediated by methylene blue: Analysis of inactivation kinetics and biochemical mechanisms
author Caetano Padial Sabino
author_facet Caetano Padial Sabino
author_role author
dc.contributor.advisor1.fl_str_mv Nilton Erbet Lincopan Huenuman
dc.contributor.advisor-co1.fl_str_mv Martha Simões Ribeiro
dc.contributor.referee1.fl_str_mv Michael Richard Hamblin
dc.contributor.referee2.fl_str_mv Jorge Luiz Mello Sampaio
dc.contributor.referee3.fl_str_mv Mark Wainwright
dc.contributor.author.fl_str_mv Caetano Padial Sabino
contributor_str_mv Nilton Erbet Lincopan Huenuman
Martha Simões Ribeiro
Michael Richard Hamblin
Jorge Luiz Mello Sampaio
Mark Wainwright
description The widespread use of antimicrobial chemotherapy in medicine and livestock production imposed an evolutive selection of drug-resistant strains worldwide. As a result, the effectiveness of our current antimicrobial armamentarium is constantly being reduced to alarming levels. Therefore, novel antimicrobial therapeutic strategies are urgently needed. Antimicrobial photodynamic therapy (APDT) comes to this scenario as a powerful tool to counteract the emergence of microbial drug-resistance. Its mechanisms of action are based on simultaneous oxidative damage of multiple targets and, therefore, it is much less likely to allow any type of microbial resistance. Therefore, the objectives of this study were focused into establishing 1) a mathematical tool to allow precise analysis of microbial photoinactivation; 2) a broad analysis of APDT effectiveness against global priority drug-resistant pathogens; 3) inhibition of ßlactamase enzymes; and 4) how the biochemical mechanisms of APDT avoid emergence of resistance. The main results obtained through the investigation led by this thesis were divided into 4 scientific articles regarding each of the above-mentioned objectives. In summary, we discovered that 1) a power-law function can precisely fit all microbial inactivation kinetics data and provide insightful information of tolerance factors and lethal doses; 2) there is no correlation between drug-resistance and APDT sensitivity, i.e., extensively drug resistant microorganisms are killed in the same kinetics as drug-sensitive controls; 3) β-lactamases are very sensitive to photodynamic inhibition; 4) biochemical mechanisms of APDT promote oxidative damages to external cell membranes, DNA and proteins whereas the main cause of microbial death seems to be directly associated with protein degradation. Thus, we conclude that APDT is effective against a broad-spectrum of pathogens and has minimum chances of promoting resistance mechanisms.
publishDate 2021
dc.date.issued.fl_str_mv 2021-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/T.9.2021.tde-05082021-094159
url https://doi.org/10.11606/T.9.2021.tde-05082021-094159
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Farmácia (Análise Clínicas)
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1786376582822100992