Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Link de acesso: | http://hdl.handle.net/10438/18256 |
Resumo: | In this work we study churn in health insurance, that is predicting which clients will cancel the product or service within a preset time-frame. Traditionally, the probability whether a client will cancel the service is modeled using logistic regression. Recently, modern machine learning techniques are becoming popular in churn modeling, having been applied in the areas of telecommunications, banking, and car insurance, among others. One of the big challenges in this problem is that only a fraction of all customers cancel the service, meaning that we have to deal with highly imbalanced class probabilities. Under-sampling and over-sampling techniques have been used to overcome this issue. We use random forests, that are ensembles of decision trees, where each of the trees fits a subsample of the data constructed using either under-sampling or over-sampling. We compare the distinct specifications of random forests using various metrics that are robust to imbalanced classes, both in-sample and out-of-sample. We observe that random forests using imbalanced random samples with fewer observations than the original series present a better overall performance. Random forests also present a better performance than the classical logistic regression, often used in health insurance companies to model churn. |
| id |
FGV_15907656dd357737191611b9bf06a45d |
|---|---|
| oai_identifier_str |
oai:repositorio.fgv.br:10438/18256 |
| network_acronym_str |
FGV |
| network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| repository_id_str |
|
| spelling |
Lento, Gabriel CarneiroEscolas::EMApMello, Carlos EduardoTargino, Rodrigo dos SantosSouza, Renato RochaMendes, Eduardo Fonseca2017-05-17T12:43:35Z2017-05-17T12:43:35Z2017-03-27LENTO, Gabriel Carneiro. Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde. Dissertação (Mestrado em Matemática Aplicada) - Escola de Matemática Aplicada, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2017.http://hdl.handle.net/10438/18256In this work we study churn in health insurance, that is predicting which clients will cancel the product or service within a preset time-frame. Traditionally, the probability whether a client will cancel the service is modeled using logistic regression. Recently, modern machine learning techniques are becoming popular in churn modeling, having been applied in the areas of telecommunications, banking, and car insurance, among others. One of the big challenges in this problem is that only a fraction of all customers cancel the service, meaning that we have to deal with highly imbalanced class probabilities. Under-sampling and over-sampling techniques have been used to overcome this issue. We use random forests, that are ensembles of decision trees, where each of the trees fits a subsample of the data constructed using either under-sampling or over-sampling. We compare the distinct specifications of random forests using various metrics that are robust to imbalanced classes, both in-sample and out-of-sample. We observe that random forests using imbalanced random samples with fewer observations than the original series present a better overall performance. Random forests also present a better performance than the classical logistic regression, often used in health insurance companies to model churn.Neste trabalho estudamos o problema de churn em seguro saúde, isto é, a previsão se o cliente irá cancelar o produto ou serviço em até um período de tempo pré-estipulado. Tradicionalmente, regressão logística é utilizada para modelar a probabilidade de cancelamento do serviço. Atualmente, técnicas modernas de machine learning vêm se tornando cada vez mais populares para esse tipo de problema, com exemplos nas áreas de telecomunicação, bancos, e seguros de carro, dentre outras. Uma das grandes dificuldades nesta modelagem é que apenas uma pequena fração dos clientes de fato cancela o serviço, o que significa que a base de dados tratada é altamente desbalanceada. Técnicas de under-sampling e over-sampling são utilizadas para contornar esse problema. Neste trabalho, aplicamos random forests, que são combinações de árvores de decisão ajustadas em subamostras dos dados, construídas utilizando under-sampling e over-sampling. Ao fim do trabalho comparamos métricas de ajustes obtidas nas diversas especificações dos modelos testados e avaliamos seus resultados dentro e fora da amostra. Observamos que técnicas de random forest utilizando sub-amostras não balanceadas com o tamanho menor do que a amostra original apresenta a melhor performance dentre as random forests utilizadas e uma melhora com relação ao praticado no mercado de seguro saúde.porUnder-samplingOver-samplingImbalanced classHealth insuranceRandom forestChurnDados desbalanceadosSeguro-saúdeMatemáticaAprendizado do computadorMineração de dados (Computação)Seguro-saúdeRandom forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúdeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTDissertação Gabriel Carneiro Lento.pdf.txtDissertação Gabriel Carneiro Lento.pdf.txtExtracted texttext/plain97349https://repositorio.fgv.br/bitstreams/ce06b42a-4ad5-4d85-8031-fd59922c0f65/download20fffb5718b2b7d5fbe1f6cb2e7b723bMD55ORIGINALDissertação Gabriel Carneiro Lento.pdfDissertação Gabriel Carneiro Lento.pdfDissertação apresentada à Escola de Matemática Aplicada da Fundação Getúlio Vargas para a obtenção de Título de Mestre em Modelagem Matemática da Informaçãoapplication/pdf832965https://repositorio.fgv.br/bitstreams/a699d19a-a015-44d4-a598-a4fb2e2c4036/downloadf79e7cb4e5933fd8c3a7c67ed781ddb5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/cd43b6f0-c495-4206-940f-d61b36f75cef/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILDissertação Gabriel Carneiro Lento.pdf.jpgDissertação Gabriel Carneiro Lento.pdf.jpgGenerated Thumbnailimage/jpeg2521https://repositorio.fgv.br/bitstreams/6b41d789-b985-475f-873f-855c7aa01174/downloadd6ab980bc8043e25cc2723486a84a685MD5610438/182562023-11-26 11:46:02.69restrictedoai:repositorio.fgv.br:10438/18256https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-26T11:46:02Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
| dc.title.por.fl_str_mv |
Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde |
| title |
Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde |
| spellingShingle |
Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde Lento, Gabriel Carneiro Under-sampling Over-sampling Imbalanced class Health insurance Random forest Churn Dados desbalanceados Seguro-saúde Matemática Aprendizado do computador Mineração de dados (Computação) Seguro-saúde |
| title_short |
Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde |
| title_full |
Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde |
| title_fullStr |
Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde |
| title_full_unstemmed |
Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde |
| title_sort |
Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde |
| author |
Lento, Gabriel Carneiro |
| author_facet |
Lento, Gabriel Carneiro |
| author_role |
author |
| dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EMAp |
| dc.contributor.member.none.fl_str_mv |
Mello, Carlos Eduardo Targino, Rodrigo dos Santos Souza, Renato Rocha |
| dc.contributor.author.fl_str_mv |
Lento, Gabriel Carneiro |
| dc.contributor.advisor1.fl_str_mv |
Mendes, Eduardo Fonseca |
| contributor_str_mv |
Mendes, Eduardo Fonseca |
| dc.subject.eng.fl_str_mv |
Under-sampling Over-sampling Imbalanced class Health insurance Random forest |
| topic |
Under-sampling Over-sampling Imbalanced class Health insurance Random forest Churn Dados desbalanceados Seguro-saúde Matemática Aprendizado do computador Mineração de dados (Computação) Seguro-saúde |
| dc.subject.por.fl_str_mv |
Churn Dados desbalanceados Seguro-saúde |
| dc.subject.area.por.fl_str_mv |
Matemática |
| dc.subject.bibliodata.por.fl_str_mv |
Aprendizado do computador Mineração de dados (Computação) Seguro-saúde |
| description |
In this work we study churn in health insurance, that is predicting which clients will cancel the product or service within a preset time-frame. Traditionally, the probability whether a client will cancel the service is modeled using logistic regression. Recently, modern machine learning techniques are becoming popular in churn modeling, having been applied in the areas of telecommunications, banking, and car insurance, among others. One of the big challenges in this problem is that only a fraction of all customers cancel the service, meaning that we have to deal with highly imbalanced class probabilities. Under-sampling and over-sampling techniques have been used to overcome this issue. We use random forests, that are ensembles of decision trees, where each of the trees fits a subsample of the data constructed using either under-sampling or over-sampling. We compare the distinct specifications of random forests using various metrics that are robust to imbalanced classes, both in-sample and out-of-sample. We observe that random forests using imbalanced random samples with fewer observations than the original series present a better overall performance. Random forests also present a better performance than the classical logistic regression, often used in health insurance companies to model churn. |
| publishDate |
2017 |
| dc.date.accessioned.fl_str_mv |
2017-05-17T12:43:35Z |
| dc.date.available.fl_str_mv |
2017-05-17T12:43:35Z |
| dc.date.issued.fl_str_mv |
2017-03-27 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
LENTO, Gabriel Carneiro. Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde. Dissertação (Mestrado em Matemática Aplicada) - Escola de Matemática Aplicada, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2017. |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/18256 |
| identifier_str_mv |
LENTO, Gabriel Carneiro. Random forest em dados desbalanceados: uma aplicação na modelagem de churn em seguro saúde. Dissertação (Mestrado em Matemática Aplicada) - Escola de Matemática Aplicada, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2017. |
| url |
http://hdl.handle.net/10438/18256 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
| instname_str |
Fundação Getulio Vargas (FGV) |
| instacron_str |
FGV |
| institution |
FGV |
| reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
| bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/ce06b42a-4ad5-4d85-8031-fd59922c0f65/download https://repositorio.fgv.br/bitstreams/a699d19a-a015-44d4-a598-a4fb2e2c4036/download https://repositorio.fgv.br/bitstreams/cd43b6f0-c495-4206-940f-d61b36f75cef/download https://repositorio.fgv.br/bitstreams/6b41d789-b985-475f-873f-855c7aa01174/download |
| bitstream.checksum.fl_str_mv |
20fffb5718b2b7d5fbe1f6cb2e7b723b f79e7cb4e5933fd8c3a7c67ed781ddb5 dfb340242cced38a6cca06c627998fa1 d6ab980bc8043e25cc2723486a84a685 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
| repository.mail.fl_str_mv |
|
| _version_ |
1827842506239246336 |