Essays in econometric theory

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Casalecchi, Alessandro Ribeiro de Carvalho
Orientador(a): Pinto, Cristine Campos de Xavier
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10438/18421
Resumo: The two papers in this work, chapters 2 and 3, regard hypothesis testing but address different issues. Chapter 2, entitled 'Improvements for external validity tests in fuzzy regression discontinuity designs', shows conditions --- assumptions of continuity, strict monotonicity and pointwise convergence --- under which two-sample goodness-of-fit (GOF) tests can be used to test for external validity in treatment-control models that suffer from imperfect compliance of units with respect to the assigned treatment. Imperfect compliance allows researchers to estimate only treatment effects for the subpopulation of compliers, and the validity of these estimates for other subpopulations (always-takers and never-takers) remains an open problem. Under the conditions in Chapter 2, the use of GOF tests in place of mean difference tests represents an improvement over other external validity tests in the literature, since more alternative hypotheses are detectable by the test statistic. We suggested to combine two GOF test statistics (one for the treated and one for the untreated) in a multiple test instead of a joint test. Chapter 3, entitled 'Higher-order UMP tests', suggests a strategy to choose among candidate test statistics, according to a power criterion, when their power performances are not distinguishable by usual methods of asymptotic comparison like local power analysis. We propose the use of higher-order asymptotic expansions, like Edgeworth expansions, to approximate the sample densities of the candidate test statistics and verify which of them has the monotone likelihood ratio property. This property implies, by the Karlin-Rubin Theorem, that the test is uniformly most powerful (UMP) --- at least to an order of approximation --- if the statistic is sufficient for the relevant parameter. When the statistics under study are not sufficient, we argue that they can often be made sufficient for a desired parametric family after appropriate reparameterization. We applied the method to search for the power-optimal bandwidth for the kernel density estimator in simulated data sets, and concluded that the order of approximation that we used (second order) is still too low to allow us to distinguish among bandwidths.
id FGV_21174febfc1592f614fc9258e484b3f5
oai_identifier_str oai:repositorio.fgv.br:10438/18421
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str
spelling Casalecchi, Alessandro Ribeiro de CarvalhoEscolas::EESPFirpo, Sergio PinheiroFerman, BrunoSouza, Pedro Carvalho Loureiro deCorbi, Raphael BotturaPinto, Cristine Campos de Xavier2017-07-05T13:46:08Z2017-07-05T13:46:08Z2017-05-25CASALECCHI, Alessandro Ribeiro de Carvalho. Essays in econometric theory. Tese (Doutorado em Economia de Empresas) - FGV - Fundação Getúlio Vargas, São Paulo, 2017.http://hdl.handle.net/10438/18421The two papers in this work, chapters 2 and 3, regard hypothesis testing but address different issues. Chapter 2, entitled 'Improvements for external validity tests in fuzzy regression discontinuity designs', shows conditions --- assumptions of continuity, strict monotonicity and pointwise convergence --- under which two-sample goodness-of-fit (GOF) tests can be used to test for external validity in treatment-control models that suffer from imperfect compliance of units with respect to the assigned treatment. Imperfect compliance allows researchers to estimate only treatment effects for the subpopulation of compliers, and the validity of these estimates for other subpopulations (always-takers and never-takers) remains an open problem. Under the conditions in Chapter 2, the use of GOF tests in place of mean difference tests represents an improvement over other external validity tests in the literature, since more alternative hypotheses are detectable by the test statistic. We suggested to combine two GOF test statistics (one for the treated and one for the untreated) in a multiple test instead of a joint test. Chapter 3, entitled 'Higher-order UMP tests', suggests a strategy to choose among candidate test statistics, according to a power criterion, when their power performances are not distinguishable by usual methods of asymptotic comparison like local power analysis. We propose the use of higher-order asymptotic expansions, like Edgeworth expansions, to approximate the sample densities of the candidate test statistics and verify which of them has the monotone likelihood ratio property. This property implies, by the Karlin-Rubin Theorem, that the test is uniformly most powerful (UMP) --- at least to an order of approximation --- if the statistic is sufficient for the relevant parameter. When the statistics under study are not sufficient, we argue that they can often be made sufficient for a desired parametric family after appropriate reparameterization. We applied the method to search for the power-optimal bandwidth for the kernel density estimator in simulated data sets, and concluded that the order of approximation that we used (second order) is still too low to allow us to distinguish among bandwidths.Os dois artigos desta tese, os capítulos 2 e 3, referem-se a testes de hipótese mas têm focos diferentes. O capítulo 2, intitulado "Improvements for external validity tests in fuzzy regression discontinuity designs," apresenta condições --- hipóteses de continuidade, monotonicidade estrita e convergência pontual --- sob as quais testes de qualidade de ajuste para duas amostras podem ser usados para testes de validade externa em modelos de tratamento-controle que sofrem de "compliance" imperfeito. Modelos com "compliance" imperfeito permitem a estimação de efeitos de tratamento apenas para a subpopulação de "compliers", sendo que tais estimativas não são necessariamente válidas para outras subpopulações ("always-takers" e "never-takers"). Sob as condições do capítulo 2, o uso do teste de qualidade de ajuste no lugar do teste de diferença de médias representa um avanço para testes de validade externa, uma vez que mais hipóteses alternativas são detectáveis pelo primeiro teste. Sugerimos combinar duas estatísticas de teste de qualidade de ajuste (uma para tratados e outra para não tratados) na forma de um teste múltiplo ao invés de um teste conjunto. O capítulo 3, intitulado "Higher-order UMP tests", sugere uma estratégia para se escolher, dentro de um conjunto de estatísticas de teste disponíveis, aquela que fornece o teste mais poderoso quando as funções de poder dos testes em questão não podem ser diferenciadas através de métodos assintóticos usuais, como análise de poder local ("local power analysis"). Propomos o uso de aproximações assintóticas de ordem mais alta, como expansões de Edgeworth, para se aproximar as densidades amostrais das estatísticas disponíveis e, com isso, verificar-se quais delas possuem a propriedade da razão monotônica de verossimilhança. Tal propriedade implica, pelo Teorema de Karlin-Rubin, que o teste é uniformemente mais poderoso (UMP) --- ao menos até certa ordem de aproximação --- se a estatística for suficiente para o parâmetro relevante. Para o caso em que as estatísticas sendo comparadas não são suficientes, argumentamos que frequentemente elas podem se tornar suficientes para uma família paramétrica de interesse após reparametrizações apropriadas. Para fins de ilustração, nós aplicamos o método proposto para determinar o valor ótimo, em termos de poder, do parâmetro de suavização do estimador de densidade por kernel em bases de dados simuladas e concluímos que a ordem de aproximação usada nesta aplicação (segunda ordem) não é alta o suficiente para permitir a diferenciação das funções de poder associadas aos diferentes valores do parâmetro de suavização.engFuzzy regression discontinuity designExternal validityHigher-order approximationsUniformly most powerful testsDesenho de regressão descontínuaValidade externaAproximações de ordem mais altaTestes uniformemente mais poderososEconomiaEconometriaModelos econométricosEstatística matemáticaEssays in econometric theoryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTTese_Alessandro_Casalecchi.pdf.txtTese_Alessandro_Casalecchi.pdf.txtExtracted texttext/plain101985https://repositorio.fgv.br/bitstreams/e0edc7c5-9a36-43d8-bf8e-fe87a646943c/downloadd48b0fe8536a659d90821b604e1ecec7MD57ORIGINALTese_Alessandro_Casalecchi.pdfTese_Alessandro_Casalecchi.pdfDoctoral thesis / Tese de doutoradoapplication/pdf2174297https://repositorio.fgv.br/bitstreams/6d255222-4614-4f55-8b79-0b34281061e3/download27298549cf220c58b7eb52f7323446d7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/e0af71e9-78d6-445a-b78b-3c2013f78d52/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILTese_Alessandro_Casalecchi.pdf.jpgTese_Alessandro_Casalecchi.pdf.jpgGenerated Thumbnailimage/jpeg2250https://repositorio.fgv.br/bitstreams/ed96dcf6-fc86-481a-ac1e-1335faddd0f4/downloadd90c9dd672055fe8f4430ce8ef8466a0MD5810438/184212023-11-05 15:01:51.183open.accessoai:repositorio.fgv.br:10438/18421https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-05T15:01:51Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.eng.fl_str_mv Essays in econometric theory
title Essays in econometric theory
spellingShingle Essays in econometric theory
Casalecchi, Alessandro Ribeiro de Carvalho
Fuzzy regression discontinuity design
External validity
Higher-order approximations
Uniformly most powerful tests
Desenho de regressão descontínua
Validade externa
Aproximações de ordem mais alta
Testes uniformemente mais poderosos
Economia
Econometria
Modelos econométricos
Estatística matemática
title_short Essays in econometric theory
title_full Essays in econometric theory
title_fullStr Essays in econometric theory
title_full_unstemmed Essays in econometric theory
title_sort Essays in econometric theory
author Casalecchi, Alessandro Ribeiro de Carvalho
author_facet Casalecchi, Alessandro Ribeiro de Carvalho
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.member.none.fl_str_mv Firpo, Sergio Pinheiro
Ferman, Bruno
Souza, Pedro Carvalho Loureiro de
Corbi, Raphael Bottura
dc.contributor.author.fl_str_mv Casalecchi, Alessandro Ribeiro de Carvalho
dc.contributor.advisor1.fl_str_mv Pinto, Cristine Campos de Xavier
contributor_str_mv Pinto, Cristine Campos de Xavier
dc.subject.eng.fl_str_mv Fuzzy regression discontinuity design
External validity
Higher-order approximations
Uniformly most powerful tests
topic Fuzzy regression discontinuity design
External validity
Higher-order approximations
Uniformly most powerful tests
Desenho de regressão descontínua
Validade externa
Aproximações de ordem mais alta
Testes uniformemente mais poderosos
Economia
Econometria
Modelos econométricos
Estatística matemática
dc.subject.por.fl_str_mv Desenho de regressão descontínua
Validade externa
Aproximações de ordem mais alta
Testes uniformemente mais poderosos
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Econometria
Modelos econométricos
Estatística matemática
description The two papers in this work, chapters 2 and 3, regard hypothesis testing but address different issues. Chapter 2, entitled 'Improvements for external validity tests in fuzzy regression discontinuity designs', shows conditions --- assumptions of continuity, strict monotonicity and pointwise convergence --- under which two-sample goodness-of-fit (GOF) tests can be used to test for external validity in treatment-control models that suffer from imperfect compliance of units with respect to the assigned treatment. Imperfect compliance allows researchers to estimate only treatment effects for the subpopulation of compliers, and the validity of these estimates for other subpopulations (always-takers and never-takers) remains an open problem. Under the conditions in Chapter 2, the use of GOF tests in place of mean difference tests represents an improvement over other external validity tests in the literature, since more alternative hypotheses are detectable by the test statistic. We suggested to combine two GOF test statistics (one for the treated and one for the untreated) in a multiple test instead of a joint test. Chapter 3, entitled 'Higher-order UMP tests', suggests a strategy to choose among candidate test statistics, according to a power criterion, when their power performances are not distinguishable by usual methods of asymptotic comparison like local power analysis. We propose the use of higher-order asymptotic expansions, like Edgeworth expansions, to approximate the sample densities of the candidate test statistics and verify which of them has the monotone likelihood ratio property. This property implies, by the Karlin-Rubin Theorem, that the test is uniformly most powerful (UMP) --- at least to an order of approximation --- if the statistic is sufficient for the relevant parameter. When the statistics under study are not sufficient, we argue that they can often be made sufficient for a desired parametric family after appropriate reparameterization. We applied the method to search for the power-optimal bandwidth for the kernel density estimator in simulated data sets, and concluded that the order of approximation that we used (second order) is still too low to allow us to distinguish among bandwidths.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-07-05T13:46:08Z
dc.date.available.fl_str_mv 2017-07-05T13:46:08Z
dc.date.issued.fl_str_mv 2017-05-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CASALECCHI, Alessandro Ribeiro de Carvalho. Essays in econometric theory. Tese (Doutorado em Economia de Empresas) - FGV - Fundação Getúlio Vargas, São Paulo, 2017.
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/18421
identifier_str_mv CASALECCHI, Alessandro Ribeiro de Carvalho. Essays in econometric theory. Tese (Doutorado em Economia de Empresas) - FGV - Fundação Getúlio Vargas, São Paulo, 2017.
url http://hdl.handle.net/10438/18421
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/e0edc7c5-9a36-43d8-bf8e-fe87a646943c/download
https://repositorio.fgv.br/bitstreams/6d255222-4614-4f55-8b79-0b34281061e3/download
https://repositorio.fgv.br/bitstreams/e0af71e9-78d6-445a-b78b-3c2013f78d52/download
https://repositorio.fgv.br/bitstreams/ed96dcf6-fc86-481a-ac1e-1335faddd0f4/download
bitstream.checksum.fl_str_mv d48b0fe8536a659d90821b604e1ecec7
27298549cf220c58b7eb52f7323446d7
dfb340242cced38a6cca06c627998fa1
d90c9dd672055fe8f4430ce8ef8466a0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1827842568779464704