Exportação concluída — 

A framework for solving non-linear DSGE models

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Orestes, Victor Martins
Orientador(a): Masini, Ricardo Pereira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10438/27610
Resumo: Propomos um arcabouço para resolver modelos DSGE não lineares. Para tanto, sorteamos uma amostra do espaço de estado, que é usada para estimar uma aproximação para as funções valor ou política de interesse. Utilizando técnicas de estatística de alta dimensão podemos atenuar o problema da dimensionalidade, ao mesmo tempo que mantemos a flexibilidade, garantias teóricas de convergência e limite superior para os erros. Em particular, propomos dois métodos diferentes: uma projeção regularizada e um algoritmo baseado em Support Vector Machines (SVM). Para ilustrar estes métodos de solução, aplicamos o primeiro algoritmo para resolver um modelo de crescimento básico, que tem uma solução linear conhecida, e mostramos que ele tem boa precisão e seleciona corretamente os coeficientes de uma base polinomial. Além disso, aplicamos o algoritmo de SVM para resolver um modelo Novo Keynesiano com um Zero Lower Bound (ZLB) e comparamos nossos resultados com os do método Smolyak, que é amplamente utilizado na literatura. Mostramos que este último superestima o impacto do ZLB na economia, alcançando uma precisão menor do que a da nossa solução.
id FGV_5d033f76b44f1868f80d5e2b0d073dd3
oai_identifier_str oai:repositorio.fgv.br:10438/27610
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str
spelling Orestes, Victor MartinsEscolas::EESPGuimarães, Bernardo de VasconcellosMedeiros, Marcelo C.Masini, Ricardo Pereira2019-06-19T12:51:51Z2019-06-19T12:51:51Z2019-05-22http://hdl.handle.net/10438/27610Propomos um arcabouço para resolver modelos DSGE não lineares. Para tanto, sorteamos uma amostra do espaço de estado, que é usada para estimar uma aproximação para as funções valor ou política de interesse. Utilizando técnicas de estatística de alta dimensão podemos atenuar o problema da dimensionalidade, ao mesmo tempo que mantemos a flexibilidade, garantias teóricas de convergência e limite superior para os erros. Em particular, propomos dois métodos diferentes: uma projeção regularizada e um algoritmo baseado em Support Vector Machines (SVM). Para ilustrar estes métodos de solução, aplicamos o primeiro algoritmo para resolver um modelo de crescimento básico, que tem uma solução linear conhecida, e mostramos que ele tem boa precisão e seleciona corretamente os coeficientes de uma base polinomial. Além disso, aplicamos o algoritmo de SVM para resolver um modelo Novo Keynesiano com um Zero Lower Bound (ZLB) e comparamos nossos resultados com os do método Smolyak, que é amplamente utilizado na literatura. Mostramos que este último superestima o impacto do ZLB na economia, alcançando uma precisão menor do que a da nossa solução.We propose a framework to solve non-linear DSGE models combining approximation and estimation techniques. Instead of relying on a fixed grid, we use Monte Carlo methods to draw samples from the state space, which are used to estimate an approximation for the value or policy functions of interest. By using estimators from high-dimensional statistics we can attenuate the curse of dimensionality while maintaining flexibility, theoretical guarantees for convergence and upper bound for the errors. In particular, we propose two different methods: a regularized projection and a support vector machine algorithm. To illustrate these solution procedures, we apply the first algorithm to solve a standard growth model, which has a known linear solution, and show that it achieves a good accuracy, correctly shrinking the coefficients of a polynomial basis. Moreover, we use the support vector machine algorithm to solve a New Keynesian model with a Zero Lower Bound (ZLB) and compare our results with the ones from the Smolyak Method, which is widely used in the literature. We show that the latter overestimate the impact of the ZLB in the economy, achieving a lower accuracy than the one from our solution.engDSGE modelsNon-linear Solution methodsHigh-dimensionalLASSOSupport vector machinesZero lower boundModelos DSGEMétodos de solução não linearesAlta dimensãoEconomiaMacroeconomia - Modelos matemáticosEquilíbrio econômico - Modelos matemáticosModelos não lineares (Estatística)Estatística matemática - Processamento de dadosAnálise de regressãoA framework for solving non-linear DSGE modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALDissertacao_Victor_Orestes.pdfDissertacao_Victor_Orestes.pdfPDFapplication/pdf828632https://repositorio.fgv.br/bitstreams/3291e03f-f95e-47ee-beb5-f9a722f9d4ad/downloadc56e376133421f377ea9d1807cede91eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/ed3d265a-6610-492e-96b2-0333bc0b4dfe/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTDissertacao_Victor_Orestes.pdf.txtDissertacao_Victor_Orestes.pdf.txtExtracted texttext/plain80496https://repositorio.fgv.br/bitstreams/a60c254f-5b8d-4705-bd06-8a5c5d7c9cb1/downloadd5e48329a460504ddcd1c651d11c1143MD55THUMBNAILDissertacao_Victor_Orestes.pdf.jpgDissertacao_Victor_Orestes.pdf.jpgGenerated Thumbnailimage/jpeg2561https://repositorio.fgv.br/bitstreams/b4849fb7-74bf-4b96-a732-93f55322dcc2/download5eafa04e8c78d88c6bf37970d557270eMD5610438/276102023-11-25 01:56:47.297open.accessoai:repositorio.fgv.br:10438/27610https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T01:56:47Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.eng.fl_str_mv A framework for solving non-linear DSGE models
title A framework for solving non-linear DSGE models
spellingShingle A framework for solving non-linear DSGE models
Orestes, Victor Martins
DSGE models
Non-linear Solution methods
High-dimensional
LASSO
Support vector machines
Zero lower bound
Modelos DSGE
Métodos de solução não lineares
Alta dimensão
Economia
Macroeconomia - Modelos matemáticos
Equilíbrio econômico - Modelos matemáticos
Modelos não lineares (Estatística)
Estatística matemática - Processamento de dados
Análise de regressão
title_short A framework for solving non-linear DSGE models
title_full A framework for solving non-linear DSGE models
title_fullStr A framework for solving non-linear DSGE models
title_full_unstemmed A framework for solving non-linear DSGE models
title_sort A framework for solving non-linear DSGE models
author Orestes, Victor Martins
author_facet Orestes, Victor Martins
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.member.none.fl_str_mv Guimarães, Bernardo de Vasconcellos
Medeiros, Marcelo C.
dc.contributor.author.fl_str_mv Orestes, Victor Martins
dc.contributor.advisor1.fl_str_mv Masini, Ricardo Pereira
contributor_str_mv Masini, Ricardo Pereira
dc.subject.eng.fl_str_mv DSGE models
Non-linear Solution methods
High-dimensional
LASSO
Support vector machines
Zero lower bound
topic DSGE models
Non-linear Solution methods
High-dimensional
LASSO
Support vector machines
Zero lower bound
Modelos DSGE
Métodos de solução não lineares
Alta dimensão
Economia
Macroeconomia - Modelos matemáticos
Equilíbrio econômico - Modelos matemáticos
Modelos não lineares (Estatística)
Estatística matemática - Processamento de dados
Análise de regressão
dc.subject.por.fl_str_mv Modelos DSGE
Métodos de solução não lineares
Alta dimensão
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Macroeconomia - Modelos matemáticos
Equilíbrio econômico - Modelos matemáticos
Modelos não lineares (Estatística)
Estatística matemática - Processamento de dados
Análise de regressão
description Propomos um arcabouço para resolver modelos DSGE não lineares. Para tanto, sorteamos uma amostra do espaço de estado, que é usada para estimar uma aproximação para as funções valor ou política de interesse. Utilizando técnicas de estatística de alta dimensão podemos atenuar o problema da dimensionalidade, ao mesmo tempo que mantemos a flexibilidade, garantias teóricas de convergência e limite superior para os erros. Em particular, propomos dois métodos diferentes: uma projeção regularizada e um algoritmo baseado em Support Vector Machines (SVM). Para ilustrar estes métodos de solução, aplicamos o primeiro algoritmo para resolver um modelo de crescimento básico, que tem uma solução linear conhecida, e mostramos que ele tem boa precisão e seleciona corretamente os coeficientes de uma base polinomial. Além disso, aplicamos o algoritmo de SVM para resolver um modelo Novo Keynesiano com um Zero Lower Bound (ZLB) e comparamos nossos resultados com os do método Smolyak, que é amplamente utilizado na literatura. Mostramos que este último superestima o impacto do ZLB na economia, alcançando uma precisão menor do que a da nossa solução.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-06-19T12:51:51Z
dc.date.available.fl_str_mv 2019-06-19T12:51:51Z
dc.date.issued.fl_str_mv 2019-05-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/27610
url http://hdl.handle.net/10438/27610
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/3291e03f-f95e-47ee-beb5-f9a722f9d4ad/download
https://repositorio.fgv.br/bitstreams/ed3d265a-6610-492e-96b2-0333bc0b4dfe/download
https://repositorio.fgv.br/bitstreams/a60c254f-5b8d-4705-bd06-8a5c5d7c9cb1/download
https://repositorio.fgv.br/bitstreams/b4849fb7-74bf-4b96-a732-93f55322dcc2/download
bitstream.checksum.fl_str_mv c56e376133421f377ea9d1807cede91e
dfb340242cced38a6cca06c627998fa1
d5e48329a460504ddcd1c651d11c1143
5eafa04e8c78d88c6bf37970d557270e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1827842434186346496