A framework for solving non-linear DSGE models
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Link de acesso: | http://hdl.handle.net/10438/27610 |
Resumo: | Propomos um arcabouço para resolver modelos DSGE não lineares. Para tanto, sorteamos uma amostra do espaço de estado, que é usada para estimar uma aproximação para as funções valor ou política de interesse. Utilizando técnicas de estatística de alta dimensão podemos atenuar o problema da dimensionalidade, ao mesmo tempo que mantemos a flexibilidade, garantias teóricas de convergência e limite superior para os erros. Em particular, propomos dois métodos diferentes: uma projeção regularizada e um algoritmo baseado em Support Vector Machines (SVM). Para ilustrar estes métodos de solução, aplicamos o primeiro algoritmo para resolver um modelo de crescimento básico, que tem uma solução linear conhecida, e mostramos que ele tem boa precisão e seleciona corretamente os coeficientes de uma base polinomial. Além disso, aplicamos o algoritmo de SVM para resolver um modelo Novo Keynesiano com um Zero Lower Bound (ZLB) e comparamos nossos resultados com os do método Smolyak, que é amplamente utilizado na literatura. Mostramos que este último superestima o impacto do ZLB na economia, alcançando uma precisão menor do que a da nossa solução. |
| id |
FGV_5d033f76b44f1868f80d5e2b0d073dd3 |
|---|---|
| oai_identifier_str |
oai:repositorio.fgv.br:10438/27610 |
| network_acronym_str |
FGV |
| network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| repository_id_str |
|
| spelling |
Orestes, Victor MartinsEscolas::EESPGuimarães, Bernardo de VasconcellosMedeiros, Marcelo C.Masini, Ricardo Pereira2019-06-19T12:51:51Z2019-06-19T12:51:51Z2019-05-22http://hdl.handle.net/10438/27610Propomos um arcabouço para resolver modelos DSGE não lineares. Para tanto, sorteamos uma amostra do espaço de estado, que é usada para estimar uma aproximação para as funções valor ou política de interesse. Utilizando técnicas de estatística de alta dimensão podemos atenuar o problema da dimensionalidade, ao mesmo tempo que mantemos a flexibilidade, garantias teóricas de convergência e limite superior para os erros. Em particular, propomos dois métodos diferentes: uma projeção regularizada e um algoritmo baseado em Support Vector Machines (SVM). Para ilustrar estes métodos de solução, aplicamos o primeiro algoritmo para resolver um modelo de crescimento básico, que tem uma solução linear conhecida, e mostramos que ele tem boa precisão e seleciona corretamente os coeficientes de uma base polinomial. Além disso, aplicamos o algoritmo de SVM para resolver um modelo Novo Keynesiano com um Zero Lower Bound (ZLB) e comparamos nossos resultados com os do método Smolyak, que é amplamente utilizado na literatura. Mostramos que este último superestima o impacto do ZLB na economia, alcançando uma precisão menor do que a da nossa solução.We propose a framework to solve non-linear DSGE models combining approximation and estimation techniques. Instead of relying on a fixed grid, we use Monte Carlo methods to draw samples from the state space, which are used to estimate an approximation for the value or policy functions of interest. By using estimators from high-dimensional statistics we can attenuate the curse of dimensionality while maintaining flexibility, theoretical guarantees for convergence and upper bound for the errors. In particular, we propose two different methods: a regularized projection and a support vector machine algorithm. To illustrate these solution procedures, we apply the first algorithm to solve a standard growth model, which has a known linear solution, and show that it achieves a good accuracy, correctly shrinking the coefficients of a polynomial basis. Moreover, we use the support vector machine algorithm to solve a New Keynesian model with a Zero Lower Bound (ZLB) and compare our results with the ones from the Smolyak Method, which is widely used in the literature. We show that the latter overestimate the impact of the ZLB in the economy, achieving a lower accuracy than the one from our solution.engDSGE modelsNon-linear Solution methodsHigh-dimensionalLASSOSupport vector machinesZero lower boundModelos DSGEMétodos de solução não linearesAlta dimensãoEconomiaMacroeconomia - Modelos matemáticosEquilíbrio econômico - Modelos matemáticosModelos não lineares (Estatística)Estatística matemática - Processamento de dadosAnálise de regressãoA framework for solving non-linear DSGE modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALDissertacao_Victor_Orestes.pdfDissertacao_Victor_Orestes.pdfPDFapplication/pdf828632https://repositorio.fgv.br/bitstreams/3291e03f-f95e-47ee-beb5-f9a722f9d4ad/downloadc56e376133421f377ea9d1807cede91eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/ed3d265a-6610-492e-96b2-0333bc0b4dfe/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTDissertacao_Victor_Orestes.pdf.txtDissertacao_Victor_Orestes.pdf.txtExtracted texttext/plain80496https://repositorio.fgv.br/bitstreams/a60c254f-5b8d-4705-bd06-8a5c5d7c9cb1/downloadd5e48329a460504ddcd1c651d11c1143MD55THUMBNAILDissertacao_Victor_Orestes.pdf.jpgDissertacao_Victor_Orestes.pdf.jpgGenerated Thumbnailimage/jpeg2561https://repositorio.fgv.br/bitstreams/b4849fb7-74bf-4b96-a732-93f55322dcc2/download5eafa04e8c78d88c6bf37970d557270eMD5610438/276102023-11-25 01:56:47.297open.accessoai:repositorio.fgv.br:10438/27610https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T01:56:47Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
| dc.title.eng.fl_str_mv |
A framework for solving non-linear DSGE models |
| title |
A framework for solving non-linear DSGE models |
| spellingShingle |
A framework for solving non-linear DSGE models Orestes, Victor Martins DSGE models Non-linear Solution methods High-dimensional LASSO Support vector machines Zero lower bound Modelos DSGE Métodos de solução não lineares Alta dimensão Economia Macroeconomia - Modelos matemáticos Equilíbrio econômico - Modelos matemáticos Modelos não lineares (Estatística) Estatística matemática - Processamento de dados Análise de regressão |
| title_short |
A framework for solving non-linear DSGE models |
| title_full |
A framework for solving non-linear DSGE models |
| title_fullStr |
A framework for solving non-linear DSGE models |
| title_full_unstemmed |
A framework for solving non-linear DSGE models |
| title_sort |
A framework for solving non-linear DSGE models |
| author |
Orestes, Victor Martins |
| author_facet |
Orestes, Victor Martins |
| author_role |
author |
| dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
| dc.contributor.member.none.fl_str_mv |
Guimarães, Bernardo de Vasconcellos Medeiros, Marcelo C. |
| dc.contributor.author.fl_str_mv |
Orestes, Victor Martins |
| dc.contributor.advisor1.fl_str_mv |
Masini, Ricardo Pereira |
| contributor_str_mv |
Masini, Ricardo Pereira |
| dc.subject.eng.fl_str_mv |
DSGE models Non-linear Solution methods High-dimensional LASSO Support vector machines Zero lower bound |
| topic |
DSGE models Non-linear Solution methods High-dimensional LASSO Support vector machines Zero lower bound Modelos DSGE Métodos de solução não lineares Alta dimensão Economia Macroeconomia - Modelos matemáticos Equilíbrio econômico - Modelos matemáticos Modelos não lineares (Estatística) Estatística matemática - Processamento de dados Análise de regressão |
| dc.subject.por.fl_str_mv |
Modelos DSGE Métodos de solução não lineares Alta dimensão |
| dc.subject.area.por.fl_str_mv |
Economia |
| dc.subject.bibliodata.por.fl_str_mv |
Macroeconomia - Modelos matemáticos Equilíbrio econômico - Modelos matemáticos Modelos não lineares (Estatística) Estatística matemática - Processamento de dados Análise de regressão |
| description |
Propomos um arcabouço para resolver modelos DSGE não lineares. Para tanto, sorteamos uma amostra do espaço de estado, que é usada para estimar uma aproximação para as funções valor ou política de interesse. Utilizando técnicas de estatística de alta dimensão podemos atenuar o problema da dimensionalidade, ao mesmo tempo que mantemos a flexibilidade, garantias teóricas de convergência e limite superior para os erros. Em particular, propomos dois métodos diferentes: uma projeção regularizada e um algoritmo baseado em Support Vector Machines (SVM). Para ilustrar estes métodos de solução, aplicamos o primeiro algoritmo para resolver um modelo de crescimento básico, que tem uma solução linear conhecida, e mostramos que ele tem boa precisão e seleciona corretamente os coeficientes de uma base polinomial. Além disso, aplicamos o algoritmo de SVM para resolver um modelo Novo Keynesiano com um Zero Lower Bound (ZLB) e comparamos nossos resultados com os do método Smolyak, que é amplamente utilizado na literatura. Mostramos que este último superestima o impacto do ZLB na economia, alcançando uma precisão menor do que a da nossa solução. |
| publishDate |
2019 |
| dc.date.accessioned.fl_str_mv |
2019-06-19T12:51:51Z |
| dc.date.available.fl_str_mv |
2019-06-19T12:51:51Z |
| dc.date.issued.fl_str_mv |
2019-05-22 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/27610 |
| url |
http://hdl.handle.net/10438/27610 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
| instname_str |
Fundação Getulio Vargas (FGV) |
| instacron_str |
FGV |
| institution |
FGV |
| reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
| bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/3291e03f-f95e-47ee-beb5-f9a722f9d4ad/download https://repositorio.fgv.br/bitstreams/ed3d265a-6610-492e-96b2-0333bc0b4dfe/download https://repositorio.fgv.br/bitstreams/a60c254f-5b8d-4705-bd06-8a5c5d7c9cb1/download https://repositorio.fgv.br/bitstreams/b4849fb7-74bf-4b96-a732-93f55322dcc2/download |
| bitstream.checksum.fl_str_mv |
c56e376133421f377ea9d1807cede91e dfb340242cced38a6cca06c627998fa1 d5e48329a460504ddcd1c651d11c1143 5eafa04e8c78d88c6bf37970d557270e |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
| repository.mail.fl_str_mv |
|
| _version_ |
1827842434186346496 |