Utilização de machine learning para categorização dos gastos de bitcoin no Brasil

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Tomé, Vívian Tostes
Orientador(a): Saporito, Yuri Fahham
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10438/18367
Resumo: A criptomoeda Bitcoin trouxe inovação para o sistema de pagamento internacional, proporcionando uma maneira simples de transferir fundos ao redor do mundo com um certo grau de anonimato. Com isso, também tornou mais fácil a venda de bens e serviços ilícitos no mercado negro. Além disso, as moedas virtuais se mostraram atraentes para os investidores devido às flutuações do seu preço. Esta tese visa explicar por que as pessoas compram bitcoins no Brasil, por meio da análise do destino das moedas virtuais originadas nas exchanges brasileiras. A análise consiste em duas etapas. Primeiro, os endereços de destino são pesquisados na web para descobrir quem é o proprietário. Em seguida, os endereços conhecidos são categorizados e usados para treinar um classificador de aprendizagem de máquina. Assim, os endereços não-identificados poderão ser submetidos ao classificador para descobrir o perfil dos brasileiros que adquirem bitcoins.
id FGV_90ac2934655e1a5f338d1d7d1c830705
oai_identifier_str oai:repositorio.fgv.br:10438/18367
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str
spelling Tomé, Vívian TostesEscolas::EMApSaporito, Yuri Fahham2017-06-23T12:38:38Z2017-06-23T12:38:38Z2017-05-05TOMÉ, Vívian. Utilização de machine learning para categorização dos gastos de bitcoin no Brasil. Dissertação (Mestrado em Matemática Aplicada) - Escola de Matemática Aplicada, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2017.http://hdl.handle.net/10438/18367A criptomoeda Bitcoin trouxe inovação para o sistema de pagamento internacional, proporcionando uma maneira simples de transferir fundos ao redor do mundo com um certo grau de anonimato. Com isso, também tornou mais fácil a venda de bens e serviços ilícitos no mercado negro. Além disso, as moedas virtuais se mostraram atraentes para os investidores devido às flutuações do seu preço. Esta tese visa explicar por que as pessoas compram bitcoins no Brasil, por meio da análise do destino das moedas virtuais originadas nas exchanges brasileiras. A análise consiste em duas etapas. Primeiro, os endereços de destino são pesquisados na web para descobrir quem é o proprietário. Em seguida, os endereços conhecidos são categorizados e usados para treinar um classificador de aprendizagem de máquina. Assim, os endereços não-identificados poderão ser submetidos ao classificador para descobrir o perfil dos brasileiros que adquirem bitcoins.The cryptocurrency Bitcoin brought innovation to the international payment system, providing a simple way to transfer funds around the world with a certain level of anonymity. This also facilitated the sale of illicit goods and services in the dark marketplace. In addition, virtual coins became attractive to investors due its price's fluctuations. This thesis aims to explain why people buy bitcoins in Brazil by analyzing the destination of the virtual coins originated from Brazilian exchanges. The analysis consists in two steps. First, the destination addresses are searched in the web to find out who is the owner. Second, the known addresses are categorized and used to train a machine learning classifier. Thus, the non-identified addresses can be submitted to the classifier to find out the profile of Brazilians bitcoin buyers.porModelagem de dadosBitcoinAprendizado do computadorTransferência eletrônica de fundosTecnologiaModelagem de dadosAprendizado do computadorBitcoinTransferência eletrônica de fundosUtilização de machine learning para categorização dos gastos de bitcoin no Brasilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTDissertação -Vívian Tomé.pdf.txtDissertação -Vívian Tomé.pdf.txtExtracted texttext/plain72118https://repositorio.fgv.br/bitstreams/79275b94-e7a4-4840-9f61-7030dc0d1bd7/download0c40d7f26c360a947914cbd1e73e3d9aMD55ORIGINALDissertação -Vívian Tomé.pdfDissertação -Vívian Tomé.pdfapplication/pdf1176937https://repositorio.fgv.br/bitstreams/ad10cca7-a464-4047-9756-bfe5c8a6a1bb/download6e9a444829b379507464c4bbb965430cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/b22512cd-e2bf-4aa0-93a7-af19a206003b/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILDissertação -Vívian Tomé.pdf.jpgDissertação -Vívian Tomé.pdf.jpgGenerated Thumbnailimage/jpeg2815https://repositorio.fgv.br/bitstreams/08ff5b00-aac7-447a-b6eb-1a866ae0a314/download5c8c960bdcd19fd00bc9d602074fa688MD5610438/183672023-11-26 07:27:08.881open.accessoai:repositorio.fgv.br:10438/18367https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-26T07:27:08Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Utilização de machine learning para categorização dos gastos de bitcoin no Brasil
title Utilização de machine learning para categorização dos gastos de bitcoin no Brasil
spellingShingle Utilização de machine learning para categorização dos gastos de bitcoin no Brasil
Tomé, Vívian Tostes
Modelagem de dados
Bitcoin
Aprendizado do computador
Transferência eletrônica de fundos
Tecnologia
Modelagem de dados
Aprendizado do computador
Bitcoin
Transferência eletrônica de fundos
title_short Utilização de machine learning para categorização dos gastos de bitcoin no Brasil
title_full Utilização de machine learning para categorização dos gastos de bitcoin no Brasil
title_fullStr Utilização de machine learning para categorização dos gastos de bitcoin no Brasil
title_full_unstemmed Utilização de machine learning para categorização dos gastos de bitcoin no Brasil
title_sort Utilização de machine learning para categorização dos gastos de bitcoin no Brasil
author Tomé, Vívian Tostes
author_facet Tomé, Vívian Tostes
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EMAp
dc.contributor.author.fl_str_mv Tomé, Vívian Tostes
dc.contributor.advisor1.fl_str_mv Saporito, Yuri Fahham
contributor_str_mv Saporito, Yuri Fahham
dc.subject.por.fl_str_mv Modelagem de dados
Bitcoin
Aprendizado do computador
Transferência eletrônica de fundos
topic Modelagem de dados
Bitcoin
Aprendizado do computador
Transferência eletrônica de fundos
Tecnologia
Modelagem de dados
Aprendizado do computador
Bitcoin
Transferência eletrônica de fundos
dc.subject.area.por.fl_str_mv Tecnologia
dc.subject.bibliodata.por.fl_str_mv Modelagem de dados
Aprendizado do computador
Bitcoin
Transferência eletrônica de fundos
description A criptomoeda Bitcoin trouxe inovação para o sistema de pagamento internacional, proporcionando uma maneira simples de transferir fundos ao redor do mundo com um certo grau de anonimato. Com isso, também tornou mais fácil a venda de bens e serviços ilícitos no mercado negro. Além disso, as moedas virtuais se mostraram atraentes para os investidores devido às flutuações do seu preço. Esta tese visa explicar por que as pessoas compram bitcoins no Brasil, por meio da análise do destino das moedas virtuais originadas nas exchanges brasileiras. A análise consiste em duas etapas. Primeiro, os endereços de destino são pesquisados na web para descobrir quem é o proprietário. Em seguida, os endereços conhecidos são categorizados e usados para treinar um classificador de aprendizagem de máquina. Assim, os endereços não-identificados poderão ser submetidos ao classificador para descobrir o perfil dos brasileiros que adquirem bitcoins.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-06-23T12:38:38Z
dc.date.available.fl_str_mv 2017-06-23T12:38:38Z
dc.date.issued.fl_str_mv 2017-05-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv TOMÉ, Vívian. Utilização de machine learning para categorização dos gastos de bitcoin no Brasil. Dissertação (Mestrado em Matemática Aplicada) - Escola de Matemática Aplicada, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2017.
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/18367
identifier_str_mv TOMÉ, Vívian. Utilização de machine learning para categorização dos gastos de bitcoin no Brasil. Dissertação (Mestrado em Matemática Aplicada) - Escola de Matemática Aplicada, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2017.
url http://hdl.handle.net/10438/18367
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/79275b94-e7a4-4840-9f61-7030dc0d1bd7/download
https://repositorio.fgv.br/bitstreams/ad10cca7-a464-4047-9756-bfe5c8a6a1bb/download
https://repositorio.fgv.br/bitstreams/b22512cd-e2bf-4aa0-93a7-af19a206003b/download
https://repositorio.fgv.br/bitstreams/08ff5b00-aac7-447a-b6eb-1a866ae0a314/download
bitstream.checksum.fl_str_mv 0c40d7f26c360a947914cbd1e73e3d9a
6e9a444829b379507464c4bbb965430c
dfb340242cced38a6cca06c627998fa1
5c8c960bdcd19fd00bc9d602074fa688
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1827842465837613056