O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | , |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.furg.br/handle/1/9858 |
Resumo: | Identificar alunos em risco de evasão tornou-se um importante objeto de pesquisa, visto que é um problema que ocasiona danos sociais, acadêmicos e financeiros. Diante desse cenário, surgiram diversas pesquisas na literatura que propõem soluções para ajudar na identificação prévia de estudantes em risco de evasão. Muitas delas utilizam algoritmos convencionais de aprendizado de máquina sobre dados educacionais, com o objetivo de detectar padrões que denunciem o perfil de um aluno que evade. No entanto, existem maneiras mais avançadas na atualidade, que poderiam explorar melhor, em termos de desempenho e qualidade, os dados educacionais para gerar um modelo preditivo mais robusto, como Deep Learning. Assim, nesta dissertação, apresentam-se duas abordagens para ajudar no processo de identificação prévia de alunos em risco de evasão. Na primeira abordagem, oito algoritmos convencionais de aprendizado de máquina foram utilizados para explorar o dataset que foi construído com dados da plataforma Moodle de dois cursos a distância, e avalia-lo no processo de modelagem preditiva. Essa abordagem resultou em dois experimentos que foram essenciais para a implementação da segunda abordagem, em que utilizou-se Deep Learning para a implementação de uma Recurrent Neural Network que, com células de LSTM em sua arquitetura, tem uma grande capacidade de aprendizagem. Com esta abordagem, realizou-se um terceiro experimento, em que pode ser observado o potencial de uma LSTM para lidar com a natureza dos dados dessa pesquisa. |
| id |
FURG_63ed5dbc7320a7bb678f8cc594a402a0 |
|---|---|
| oai_identifier_str |
oai:repositorio.furg.br:1/9858 |
| network_acronym_str |
FURG |
| network_name_str |
Repositório Institucional da FURG (RI FURG) |
| repository_id_str |
|
| spelling |
Oliveira, Myke Morais deEspíndula, Danúbia BuenoPias, Marcelo Rita2021-12-15T12:24:28Z2021-12-15T12:24:28Z2020OLIVEIRA, Myke Morais de. O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância. 2020. 70 f. Dissertação (Mestrado em Engenharia da Computação) – Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Rio Grande, 2020.http://repositorio.furg.br/handle/1/9858Identificar alunos em risco de evasão tornou-se um importante objeto de pesquisa, visto que é um problema que ocasiona danos sociais, acadêmicos e financeiros. Diante desse cenário, surgiram diversas pesquisas na literatura que propõem soluções para ajudar na identificação prévia de estudantes em risco de evasão. Muitas delas utilizam algoritmos convencionais de aprendizado de máquina sobre dados educacionais, com o objetivo de detectar padrões que denunciem o perfil de um aluno que evade. No entanto, existem maneiras mais avançadas na atualidade, que poderiam explorar melhor, em termos de desempenho e qualidade, os dados educacionais para gerar um modelo preditivo mais robusto, como Deep Learning. Assim, nesta dissertação, apresentam-se duas abordagens para ajudar no processo de identificação prévia de alunos em risco de evasão. Na primeira abordagem, oito algoritmos convencionais de aprendizado de máquina foram utilizados para explorar o dataset que foi construído com dados da plataforma Moodle de dois cursos a distância, e avalia-lo no processo de modelagem preditiva. Essa abordagem resultou em dois experimentos que foram essenciais para a implementação da segunda abordagem, em que utilizou-se Deep Learning para a implementação de uma Recurrent Neural Network que, com células de LSTM em sua arquitetura, tem uma grande capacidade de aprendizagem. Com esta abordagem, realizou-se um terceiro experimento, em que pode ser observado o potencial de uma LSTM para lidar com a natureza dos dados dessa pesquisa.Identifying students at dropout risk has become an important research object since it is a problem that causes social, academic and financial damage. Given this scenario, sev- eral researches have been developed in the literature proposing solutions to support the early identification of students at dropout risk. Many of them use conventional machine learning algorithms on educational data to detect patterns that can reveal an at-risk student profile. However, there are more advanced mechanisms in the present moment that could better exploit, in terms of performance and quality, educational data to generate a more robust predictive model, like Deep Learning. Thus, in this dissertation, two approaches are presented to help in the process of early identification of students at dropout risk. In the first one, eight conventional machine learning algorithms were used to explore the dataset that was built with data from the Moodle platform of two distance postgraduate programs and to evaluate it in the predictive modeling process. This approach resulted in two experiments that were essential for the implementation of the second approach, in which Deep Learning was used to implement a Recurrent Neural Network that, with LSTM cells in its architecture, has a great capacity for learning. Therefore, a third exper- iment was carried out with the second approach, in which the potential of an LSTM can be observed to deal with the nature of the data in this research.porModelo preditivoAprendizado de máquinaDeep learningEvasão na educação a distânciaDados do MoodlePredictive modelMachine learningDropout in distance educationMoodle dataO uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distânciaUsing machine learning to identify students at drpout risk ins distance educationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FURG (RI FURG)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.furg.br/bitstreams/3a4dd465-810d-4a7b-a327-33beb1fbb382/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADORIGINAL0000013522.pdf0000013522.pdfapplication/pdf3681239https://repositorio.furg.br/bitstreams/a19779b1-5f6d-439c-bf16-3081f1527f9a/downloadd8825d4b4e1a21d704f07800765e4b94MD51trueAnonymousREADTEXT0000013522.pdf.txt0000013522.pdf.txtExtracted texttext/plain102659https://repositorio.furg.br/bitstreams/a051051e-4ba2-433a-a98f-576bbb4eae50/downloadca88f7487a43ead467431f6e2a5d2e9eMD53falseAnonymousREADTHUMBNAIL0000013522.pdf.jpg0000013522.pdf.jpgGenerated Thumbnailimage/jpeg3396https://repositorio.furg.br/bitstreams/381c8037-32bc-42f1-ad46-9bcf52625e59/download18583f7e9925de192922e2dcf189cdbaMD54falseAnonymousREAD1/98582025-12-10 01:50:38.371open.accessoai:repositorio.furg.br:1/9858https://repositorio.furg.brRepositório InstitucionalPUBhttps://repositorio.furg.br/oai/request || http://200.19.254.174/oai/requestrepositorio@furg.br||sib.bdtd@furg.bropendoar:2025-12-10T04:50:38Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| dc.title.pt_BR.fl_str_mv |
O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância |
| dc.title.alternative.pt_BR.fl_str_mv |
Using machine learning to identify students at drpout risk ins distance education |
| title |
O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância |
| spellingShingle |
O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância Oliveira, Myke Morais de Modelo preditivo Aprendizado de máquina Deep learning Evasão na educação a distância Dados do Moodle Predictive model Machine learning Dropout in distance education Moodle data |
| title_short |
O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância |
| title_full |
O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância |
| title_fullStr |
O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância |
| title_full_unstemmed |
O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância |
| title_sort |
O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância |
| author |
Oliveira, Myke Morais de |
| author_facet |
Oliveira, Myke Morais de |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Oliveira, Myke Morais de |
| dc.contributor.advisor1.fl_str_mv |
Espíndula, Danúbia Bueno Pias, Marcelo Rita |
| contributor_str_mv |
Espíndula, Danúbia Bueno Pias, Marcelo Rita |
| dc.subject.por.fl_str_mv |
Modelo preditivo Aprendizado de máquina Deep learning Evasão na educação a distância Dados do Moodle Predictive model Machine learning Dropout in distance education Moodle data |
| topic |
Modelo preditivo Aprendizado de máquina Deep learning Evasão na educação a distância Dados do Moodle Predictive model Machine learning Dropout in distance education Moodle data |
| description |
Identificar alunos em risco de evasão tornou-se um importante objeto de pesquisa, visto que é um problema que ocasiona danos sociais, acadêmicos e financeiros. Diante desse cenário, surgiram diversas pesquisas na literatura que propõem soluções para ajudar na identificação prévia de estudantes em risco de evasão. Muitas delas utilizam algoritmos convencionais de aprendizado de máquina sobre dados educacionais, com o objetivo de detectar padrões que denunciem o perfil de um aluno que evade. No entanto, existem maneiras mais avançadas na atualidade, que poderiam explorar melhor, em termos de desempenho e qualidade, os dados educacionais para gerar um modelo preditivo mais robusto, como Deep Learning. Assim, nesta dissertação, apresentam-se duas abordagens para ajudar no processo de identificação prévia de alunos em risco de evasão. Na primeira abordagem, oito algoritmos convencionais de aprendizado de máquina foram utilizados para explorar o dataset que foi construído com dados da plataforma Moodle de dois cursos a distância, e avalia-lo no processo de modelagem preditiva. Essa abordagem resultou em dois experimentos que foram essenciais para a implementação da segunda abordagem, em que utilizou-se Deep Learning para a implementação de uma Recurrent Neural Network que, com células de LSTM em sua arquitetura, tem uma grande capacidade de aprendizagem. Com esta abordagem, realizou-se um terceiro experimento, em que pode ser observado o potencial de uma LSTM para lidar com a natureza dos dados dessa pesquisa. |
| publishDate |
2020 |
| dc.date.issued.fl_str_mv |
2020 |
| dc.date.accessioned.fl_str_mv |
2021-12-15T12:24:28Z |
| dc.date.available.fl_str_mv |
2021-12-15T12:24:28Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
OLIVEIRA, Myke Morais de. O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância. 2020. 70 f. Dissertação (Mestrado em Engenharia da Computação) – Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Rio Grande, 2020. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.furg.br/handle/1/9858 |
| identifier_str_mv |
OLIVEIRA, Myke Morais de. O uso de aprendizado de máquina para identificar alunos em risco de evasão na educação a distância. 2020. 70 f. Dissertação (Mestrado em Engenharia da Computação) – Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Rio Grande, 2020. |
| url |
http://repositorio.furg.br/handle/1/9858 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FURG (RI FURG) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
| instname_str |
Universidade Federal do Rio Grande (FURG) |
| instacron_str |
FURG |
| institution |
FURG |
| reponame_str |
Repositório Institucional da FURG (RI FURG) |
| collection |
Repositório Institucional da FURG (RI FURG) |
| bitstream.url.fl_str_mv |
https://repositorio.furg.br/bitstreams/3a4dd465-810d-4a7b-a327-33beb1fbb382/download https://repositorio.furg.br/bitstreams/a19779b1-5f6d-439c-bf16-3081f1527f9a/download https://repositorio.furg.br/bitstreams/a051051e-4ba2-433a-a98f-576bbb4eae50/download https://repositorio.furg.br/bitstreams/381c8037-32bc-42f1-ad46-9bcf52625e59/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 d8825d4b4e1a21d704f07800765e4b94 ca88f7487a43ead467431f6e2a5d2e9e 18583f7e9925de192922e2dcf189cdba |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG) |
| repository.mail.fl_str_mv |
repositorio@furg.br||sib.bdtd@furg.br |
| _version_ |
1856849721143853056 |