An??lise de mobilidade e um Autoencoder Robusto
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Instituto Nacional de Telecomunica????es
|
| Programa de Pós-Graduação: |
Mestrado em Engenharia de Telecomunica????es
|
| Departamento: |
Instituto Nacional de Telecomunica????es
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://tede.inatel.br:8080/tede/handle/tede/234 |
Resumo: | Statistical channel modeling plays an important role in the development of commu nication networks. With the advent of 5th generation of mobile networks (5G) and 6th generation of mobile networks (6G), it is necessary to use generalist models, since networks are expected to be increasingly diversified in terms of connected devices and with greater need for resources and efficiency. A promising paradigm for modern networks is artificial intelligence (AI), with the role of optimization, integration and management at various levels. This work seeks to evaluate a general ??-?? fading model affected by Gamma sha dowing in a random waypoint model (RWP) mobility scenario for different propa gation environments and physical network topologies. New expressions were ob tained for probability density function (PDF), cumulative distribution function (CDF), average symbol error probability (ASEP), outage probability (OP) and capacity. Then, the application of a communication system based on dense neural network (DNN) as an autoencoder (AE) in the proposed channel is investigated. With only the knowledge of the channel samples, the AE obtained a performance similar to traditional modulations and proved to be robust for channel variations. |
| id |
INAT_278f0587cbefd4a0ff69628865b1bd97 |
|---|---|
| oai_identifier_str |
oai:localhost:tede/234 |
| network_acronym_str |
INAT |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da INATEL |
| repository_id_str |
|
| spelling |
Souza , Rausley Adriano Amaral de996.751.536-87http://lattes.cnpq.br/6238219709706103Souza , Rausley Adriano Amaral de996.751.536-87http://lattes.cnpq.br/6238219709706103Bonfin, Roberto Cesar Dias VilelaFigueiredo, Felipe Augusto Pereira De051.996.986-30http://lattes.cnpq.br/0188611850092267Brito, Jos?? Marcos C??mara495.450.866-53http://lattes.cnpq.br/0370383210890132087.460.176-23Pereira , Pedro M??rcio Raposo2022-08-23T13:53:05Z2022-07-19Pereira , Pedro M??rcio Raposo. An??lise de mobilidade e um Autoencoder Robusto. 2022. [96]. disserta????o( Mestrado em Engenharia de Telecomunica????es) - Instituto Nacional de Telecomunica????es, [Santa Rita Do Sapuca??] .https://tede.inatel.br:8080/tede/handle/tede/234Statistical channel modeling plays an important role in the development of commu nication networks. With the advent of 5th generation of mobile networks (5G) and 6th generation of mobile networks (6G), it is necessary to use generalist models, since networks are expected to be increasingly diversified in terms of connected devices and with greater need for resources and efficiency. A promising paradigm for modern networks is artificial intelligence (AI), with the role of optimization, integration and management at various levels. This work seeks to evaluate a general ??-?? fading model affected by Gamma sha dowing in a random waypoint model (RWP) mobility scenario for different propa gation environments and physical network topologies. New expressions were ob tained for probability density function (PDF), cumulative distribution function (CDF), average symbol error probability (ASEP), outage probability (OP) and capacity. Then, the application of a communication system based on dense neural network (DNN) as an autoencoder (AE) in the proposed channel is investigated. With only the knowledge of the channel samples, the AE obtained a performance similar to traditional modulations and proved to be robust for channel variations.A modelagem estat??stica de canais desempenha um papel importante no desenvolvimento de redes de comunica????es, com o advento da quinta gera????o de redes m??veis (5G) e sexta gera????o de redes m??veis (6G), j?? que se espera redes cada vez mais diversificadas quanto aos dispositivos conectados e com maior necessidade de recursos e efici??ncia. Um paradigma promissor para redes modernas e a intelig??ncia artificial ( artificial intelligence, AI), com o papel de otimiza????o, integra????o e ger??ncia em v??rios n??veis. Este trabalho procura avaliar um modelo generalista de desvanecimento ??-?? afetado por um sombreamento Gama em um cen??rio de mobilidade do tipo modelo de paradas aleat??rias ( random waypoint model, RWP) para diferentes ambientes de propaga????o e topologias. Obtiveram-se novas express??es para fun????o densidade de probabilidade (FDP), fun????o de distribui????o cumulativa (FDC), probabilidade de erro de s??mbolo media ( average symbol error probability, ASEP), probabilidade de indisponibilidade (PI) e capacidade. Tamb??m, verificou-se a aplica????o?? ao de um sistema de comunica????o, baseado em rede neural densa (dense neural network, DNN), na forma de um autoencoder (AE) no canal proposto. Com o conhecimento apenas das amostras do canal, o AE obteve desempenho similar as modula????es tradicionais e se mostrou robusto para varia????es no canal.Submitted by Tede Dspace (tede@inatel.br) on 2022-08-23T13:52:23Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Disserta????o V.Final Pedro Marcio.pdf: 2382555 bytes, checksum: 57aedde8feeb3484c7f321c61ef6f53a (MD5)Made available in DSpace on 2022-08-23T13:53:05Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Disserta????o V.Final Pedro Marcio.pdf: 2382555 bytes, checksum: 57aedde8feeb3484c7f321c61ef6f53a (MD5) Previous issue date: 2022-07-19application/pdfhttp://tede.inatel.br:8080/jspui/retrieve/1869/Disserta%c3%a7%c3%a3o%20V.Final%20Pedro%20Marcio.pdf.jpgporInstituto Nacional de Telecomunica????esMestrado em Engenharia de Telecomunica????esINATELBrasilInstituto Nacional de Telecomunica????eshttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccess5G; 6G; mobilidade; sombreamento; IA; autoencoder; desvanecimento ??-??. xx5G; 6G; mobility; shadowing; IA; autoencoder; ??-?? fading.Engenharia - Telecomunica????esAn??lise de mobilidade e um Autoencoder Robustoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Biblioteca Digital de Teses e Dissertações da INATELinstname:Instituto Nacional de Telecomunicações (INATEL)instacron:INATELLICENSElicense.txtlicense.txttext/plain; charset=utf-850http://localhost:8080/tede/bitstream/tede/234/1/license.txtad97de64637545abb37de9243411913cMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-846http://localhost:8080/tede/bitstream/tede/234/2/license_url587cd8ffae15c8598ed3c46d248a3f38MD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/tede/bitstream/tede/234/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/tede/bitstream/tede/234/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDisserta????o V.Final Pedro Marcio.pdfDisserta????o V.Final Pedro Marcio.pdfapplication/pdf2382555http://localhost:8080/tede/bitstream/tede/234/5/Disserta%C3%A7%C3%A3o+V.Final+Pedro+Marcio.pdf57aedde8feeb3484c7f321c61ef6f53aMD55TEXTDisserta????o V.Final Pedro Marcio.pdf.txtDisserta????o V.Final Pedro Marcio.pdf.txttext/plain127701http://localhost:8080/tede/bitstream/tede/234/6/Disserta%C3%A7%C3%A3o+V.Final+Pedro+Marcio.pdf.txt3613fea4a25da49cf00135d3d14021bcMD56THUMBNAILDisserta????o V.Final Pedro Marcio.pdf.jpgDisserta????o V.Final Pedro Marcio.pdf.jpgimage/jpeg4005http://localhost:8080/tede/bitstream/tede/234/7/Disserta%C3%A7%C3%A3o+V.Final+Pedro+Marcio.pdf.jpg2adde8025a5c24dd0c9687d52824e6fcMD57tede/2342022-08-24 01:00:09.078oai:localhost:tede/234aHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvNC4wLy4=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.inatel.br:8080/jspui/PUBhttp://tede.inatel.br:8080/oai/requestbiblioteca@inatel.br || biblioteca.atendimento@inatel.bropendoar:2022-08-24T04:00:09Biblioteca Digital de Teses e Dissertações da INATEL - Instituto Nacional de Telecomunicações (INATEL)false |
| dc.title.por.fl_str_mv |
An??lise de mobilidade e um Autoencoder Robusto |
| title |
An??lise de mobilidade e um Autoencoder Robusto |
| spellingShingle |
An??lise de mobilidade e um Autoencoder Robusto Pereira , Pedro M??rcio Raposo 5G; 6G; mobilidade; sombreamento; IA; autoencoder; desvanecimento ??-??. xx 5G; 6G; mobility; shadowing; IA; autoencoder; ??-?? fading. Engenharia - Telecomunica????es |
| title_short |
An??lise de mobilidade e um Autoencoder Robusto |
| title_full |
An??lise de mobilidade e um Autoencoder Robusto |
| title_fullStr |
An??lise de mobilidade e um Autoencoder Robusto |
| title_full_unstemmed |
An??lise de mobilidade e um Autoencoder Robusto |
| title_sort |
An??lise de mobilidade e um Autoencoder Robusto |
| author |
Pereira , Pedro M??rcio Raposo |
| author_facet |
Pereira , Pedro M??rcio Raposo |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Souza , Rausley Adriano Amaral de |
| dc.contributor.advisor1ID.fl_str_mv |
996.751.536-87 |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6238219709706103 |
| dc.contributor.referee1.fl_str_mv |
Souza , Rausley Adriano Amaral de |
| dc.contributor.referee1ID.fl_str_mv |
996.751.536-87 |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/6238219709706103 |
| dc.contributor.referee2.fl_str_mv |
Bonfin, Roberto Cesar Dias Vilela |
| dc.contributor.referee3.fl_str_mv |
Figueiredo, Felipe Augusto Pereira De |
| dc.contributor.referee3ID.fl_str_mv |
051.996.986-30 |
| dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/0188611850092267 |
| dc.contributor.referee4.fl_str_mv |
Brito, Jos?? Marcos C??mara |
| dc.contributor.referee4ID.fl_str_mv |
495.450.866-53 |
| dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/0370383210890132 |
| dc.contributor.authorID.fl_str_mv |
087.460.176-23 |
| dc.contributor.author.fl_str_mv |
Pereira , Pedro M??rcio Raposo |
| contributor_str_mv |
Souza , Rausley Adriano Amaral de Souza , Rausley Adriano Amaral de Bonfin, Roberto Cesar Dias Vilela Figueiredo, Felipe Augusto Pereira De Brito, Jos?? Marcos C??mara |
| dc.subject.por.fl_str_mv |
5G; 6G; mobilidade; sombreamento; IA; autoencoder; desvanecimento ??-??. xx |
| topic |
5G; 6G; mobilidade; sombreamento; IA; autoencoder; desvanecimento ??-??. xx 5G; 6G; mobility; shadowing; IA; autoencoder; ??-?? fading. Engenharia - Telecomunica????es |
| dc.subject.eng.fl_str_mv |
5G; 6G; mobility; shadowing; IA; autoencoder; ??-?? fading. |
| dc.subject.cnpq.fl_str_mv |
Engenharia - Telecomunica????es |
| description |
Statistical channel modeling plays an important role in the development of commu nication networks. With the advent of 5th generation of mobile networks (5G) and 6th generation of mobile networks (6G), it is necessary to use generalist models, since networks are expected to be increasingly diversified in terms of connected devices and with greater need for resources and efficiency. A promising paradigm for modern networks is artificial intelligence (AI), with the role of optimization, integration and management at various levels. This work seeks to evaluate a general ??-?? fading model affected by Gamma sha dowing in a random waypoint model (RWP) mobility scenario for different propa gation environments and physical network topologies. New expressions were ob tained for probability density function (PDF), cumulative distribution function (CDF), average symbol error probability (ASEP), outage probability (OP) and capacity. Then, the application of a communication system based on dense neural network (DNN) as an autoencoder (AE) in the proposed channel is investigated. With only the knowledge of the channel samples, the AE obtained a performance similar to traditional modulations and proved to be robust for channel variations. |
| publishDate |
2022 |
| dc.date.accessioned.fl_str_mv |
2022-08-23T13:53:05Z |
| dc.date.issued.fl_str_mv |
2022-07-19 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
Pereira , Pedro M??rcio Raposo. An??lise de mobilidade e um Autoencoder Robusto. 2022. [96]. disserta????o( Mestrado em Engenharia de Telecomunica????es) - Instituto Nacional de Telecomunica????es, [Santa Rita Do Sapuca??] . |
| dc.identifier.uri.fl_str_mv |
https://tede.inatel.br:8080/tede/handle/tede/234 |
| identifier_str_mv |
Pereira , Pedro M??rcio Raposo. An??lise de mobilidade e um Autoencoder Robusto. 2022. [96]. disserta????o( Mestrado em Engenharia de Telecomunica????es) - Instituto Nacional de Telecomunica????es, [Santa Rita Do Sapuca??] . |
| url |
https://tede.inatel.br:8080/tede/handle/tede/234 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Instituto Nacional de Telecomunica????es |
| dc.publisher.program.fl_str_mv |
Mestrado em Engenharia de Telecomunica????es |
| dc.publisher.initials.fl_str_mv |
INATEL |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto Nacional de Telecomunica????es |
| publisher.none.fl_str_mv |
Instituto Nacional de Telecomunica????es |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da INATEL instname:Instituto Nacional de Telecomunicações (INATEL) instacron:INATEL |
| instname_str |
Instituto Nacional de Telecomunicações (INATEL) |
| instacron_str |
INATEL |
| institution |
INATEL |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da INATEL |
| collection |
Biblioteca Digital de Teses e Dissertações da INATEL |
| bitstream.url.fl_str_mv |
http://localhost:8080/tede/bitstream/tede/234/1/license.txt http://localhost:8080/tede/bitstream/tede/234/2/license_url http://localhost:8080/tede/bitstream/tede/234/3/license_text http://localhost:8080/tede/bitstream/tede/234/4/license_rdf http://localhost:8080/tede/bitstream/tede/234/5/Disserta%C3%A7%C3%A3o+V.Final+Pedro+Marcio.pdf http://localhost:8080/tede/bitstream/tede/234/6/Disserta%C3%A7%C3%A3o+V.Final+Pedro+Marcio.pdf.txt http://localhost:8080/tede/bitstream/tede/234/7/Disserta%C3%A7%C3%A3o+V.Final+Pedro+Marcio.pdf.jpg |
| bitstream.checksum.fl_str_mv |
ad97de64637545abb37de9243411913c 587cd8ffae15c8598ed3c46d248a3f38 d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 57aedde8feeb3484c7f321c61ef6f53a 3613fea4a25da49cf00135d3d14021bc 2adde8025a5c24dd0c9687d52824e6fc |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da INATEL - Instituto Nacional de Telecomunicações (INATEL) |
| repository.mail.fl_str_mv |
biblioteca@inatel.br || biblioteca.atendimento@inatel.br |
| _version_ |
1800214224461365248 |