Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Vital, Tatiane Melo lattes
Orientador(a): Ynoguti, Carlos Alberto lattes
Banca de defesa: Ynoguti, Carlos Alberto lattes, Silva, Francisco Jos?e Fraga da lattes, Nakano, Alberto Yoshihiro lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Nacional de Telecomunica??es
Programa de Pós-Graduação: Mestrado em Engenharia de Telecomunica??es
Departamento: Instituto Nacional de Telecomunica??es
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tede.inatel.br:8080/tede/handle/tede/32
Resumo: The mismatch between the acoustic conditions of the training utterances and those experienced by automatic speech recognition systems is one of the responsible factors for its performance degradation when operating in noisy environments. This is a relevant issue in the current reality with increasing use of these systems on mobile devices. Among the various techniques proposed in the literature to minimize this challenge, the adaptation based on Maximum a Posteriori criteria (MAP) stands out where the acoustic models from training stage can be adapted to the noise condition (type and level) experienced by the system. In this approach, noise samples are used to modify the parameters of the acoustics models to maximize the word accuracy. The intensity of this modi?cation depends on an adaptation coeficient which is usually calculated empirically through a grid search. In this dissertation, a modeling of how the great values of these coe?cients behave according the type and level of noise is performed. From this result, an algorithm to determine an appropriate value for it is proposed. It is based on the parametric adjustment by application of logistic curve minimizing the processing time. The adaptation coe?cient provided by this algorithm does not lead the maximum word accuracy for all cases, but it always provides gain. The experimental results show an gain of 3% on word accuracy.
id INAT_f44fea4646bfb25801fe0494c795bb84
oai_identifier_str oai:localhost:tede/32
network_acronym_str INAT
network_name_str Biblioteca Digital de Teses e Dissertações da INATEL
repository_id_str
spelling Ynoguti, Carlos Alberto156.167.778-70http://lattes.cnpq.br/5678667205895840Ynoguti, Carlos Alberto156.167.778-70http://lattes.cnpq.br/5678667205895840Silva, Francisco Jos?e Fraga dahttp://lattes.cnpq.br/6574409043436708Nakano, Alberto Yoshihirohttp://lattes.cnpq.br/7663994105896731056.199.767-50http://lattes.cnpq.br/7640884895085844Vital, Tatiane Melo2016-07-05T21:00:52Z2013-09-30Vital, Tatiane Melo. Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala. 2013. [90]. Disserta????o( Programa 1) - Instituto Nacional de Telecomunicacoes, [Santa Rita do Sapuca?] .http://tede.inatel.br:8080/tede/handle/tede/32The mismatch between the acoustic conditions of the training utterances and those experienced by automatic speech recognition systems is one of the responsible factors for its performance degradation when operating in noisy environments. This is a relevant issue in the current reality with increasing use of these systems on mobile devices. Among the various techniques proposed in the literature to minimize this challenge, the adaptation based on Maximum a Posteriori criteria (MAP) stands out where the acoustic models from training stage can be adapted to the noise condition (type and level) experienced by the system. In this approach, noise samples are used to modify the parameters of the acoustics models to maximize the word accuracy. The intensity of this modi?cation depends on an adaptation coeficient which is usually calculated empirically through a grid search. In this dissertation, a modeling of how the great values of these coe?cients behave according the type and level of noise is performed. From this result, an algorithm to determine an appropriate value for it is proposed. It is based on the parametric adjustment by application of logistic curve minimizing the processing time. The adaptation coe?cient provided by this algorithm does not lead the maximum word accuracy for all cases, but it always provides gain. The experimental results show an gain of 3% on word accuracy.O descasamento entre as condi??es ac?sticas das locu??es utilizadas no treinamento e aquelas vivenciadas pelos sistemas de reconhecimento autom?tico de fala ? um dos fatores respons?veis pela degrada??o de seu desempenho quando operam em ambientes ruidosos. Esta ? uma quest?o relevante na realidade atual, com o aumento do uso destes sistemas em dispositivos m?veis. Dentre as v?rias t?cnicas propostas na literatura para minimizar este problema, destaca-se a adapta??o baseada no crit?rio do M?ximo a Posteriori (MAP), onde os modelos ac?sticos gerados na etapa de treinamento podem ser adaptados para a condi??o de ru?do (tipo e intensidade) experimentada pelo sistema. Nesta abordagem, amostras do ru?do s?o utilizadas para modificar os par?metros dos modelos ac?sticos de modo a maximizar a taxa de acertos. A intensidade desta modifica??o depende de um coeficiente de adapta??o, que em geral ? calculado de forma emp?rica, atrav?s um processo de varredura. Nesta disserta??o ? realizado um modelamento de como os valores ?timos deste coeficiente se comportam com o tipo e a intensidade do ru?do e, a partir deste resultado, prop?e-se um algoritmo para determinar um valor adequado para o mesmo. Este baseia-se no ajuste param?trico atrav?s da aplica??o da curva log?stica minimizando tempo de processamento. N?o se consegue com este algoritmo determinar o coeficiente de adapta??o que retorne a m?xima taxa de acertos em todos os casos, mas a um coeficiente que proporcione um aumento desta taxa. Nos testes realizados, obteve-se um ganho m?dio de 3% na taxa de acertos.Submitted by Tede Dspace (tede@inatel.br) on 2016-07-05T21:00:52Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Disserta??o V.Final Tatiane Vital.pdf: 719718 bytes, checksum: 46830da6d95b346332b41987c4e63a73 (MD5)Made available in DSpace on 2016-07-05T21:00:52Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Disserta??o V.Final Tatiane Vital.pdf: 719718 bytes, checksum: 46830da6d95b346332b41987c4e63a73 (MD5) Previous issue date: 2013-09-30application/pdfhttp://tede.inatel.br:8080/jspui/retrieve/335/Disserta%c3%a7%c3%a3o%20V.Final%20Tatiane%20Vital.pdf.jpgporInstituto Nacional de Telecomunica??esMestrado em Engenharia de Telecomunica??esINATELBrasilInstituto Nacional de Telecomunica??eshttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccessReconhecimento de Fala Robusto; MAP; Coeficiente de Adapta??oEngenharia - Telecomunica??esModelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de falainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Biblioteca Digital de Teses e Dissertações da INATELinstname:Instituto Nacional de Telecomunicações (INATEL)instacron:INATELTEXTDisserta??o V.Final Tatiane Vital.pdf.txtDisserta??o V.Final Tatiane Vital.pdf.txttext/plain154913http://localhost:8080/tede/bitstream/tede/32/6/Disserta%C3%A7%C3%A3o+V.Final+Tatiane+Vital.pdf.txt1b548ae6812b634688af313ecdd81cd1MD56THUMBNAILDisserta??o V.Final Tatiane Vital.pdf.jpgDisserta??o V.Final Tatiane Vital.pdf.jpgimage/jpeg4893http://localhost:8080/tede/bitstream/tede/32/7/Disserta%C3%A7%C3%A3o+V.Final+Tatiane+Vital.pdf.jpg2a7a3e12c0cf3e04293d736adf0861beMD57LICENSElicense.txtlicense.txttext/plain; charset=utf-8112http://localhost:8080/tede/bitstream/tede/32/1/license.txtc6279291b293f0db82678eaa73a27769MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-846http://localhost:8080/tede/bitstream/tede/32/2/license_url587cd8ffae15c8598ed3c46d248a3f38MD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/tede/bitstream/tede/32/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/tede/bitstream/tede/32/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDisserta??o V.Final Tatiane Vital.pdfDisserta??o V.Final Tatiane Vital.pdfapplication/pdf719718http://localhost:8080/tede/bitstream/tede/32/5/Disserta%C3%A7%C3%A3o+V.Final+Tatiane+Vital.pdf46830da6d95b346332b41987c4e63a73MD55tede/322018-04-16 16:31:24.577oai:localhost:tede/32QXV0b3Jpem8gYSBwdWJsaWNhPz9vIGRhIG1pbmhhIERpc3NlcnRhPz9vIGRlIE1lc3RyYWRvLCBlbSBmb3JtYXRvIFBERiwgY29tIGJsb3F1ZWlvIGRlIGVkaT8/bywgY29sYWdlbSBlIGM/cGlhLg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede.inatel.br:8080/jspui/PUBhttp://tede.inatel.br:8080/oai/requestbiblioteca@inatel.br || biblioteca.atendimento@inatel.bropendoar:2018-04-16T19:31:24Biblioteca Digital de Teses e Dissertações da INATEL - Instituto Nacional de Telecomunicações (INATEL)false
dc.title.por.fl_str_mv Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala
title Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala
spellingShingle Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala
Vital, Tatiane Melo
Reconhecimento de Fala Robusto; MAP; Coeficiente de Adapta??o
Engenharia - Telecomunica??es
title_short Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala
title_full Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala
title_fullStr Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala
title_full_unstemmed Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala
title_sort Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala
author Vital, Tatiane Melo
author_facet Vital, Tatiane Melo
author_role author
dc.contributor.advisor1.fl_str_mv Ynoguti, Carlos Alberto
dc.contributor.advisor1ID.fl_str_mv 156.167.778-70
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5678667205895840
dc.contributor.referee1.fl_str_mv Ynoguti, Carlos Alberto
dc.contributor.referee1ID.fl_str_mv 156.167.778-70
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5678667205895840
dc.contributor.referee2.fl_str_mv Silva, Francisco Jos?e Fraga da
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/6574409043436708
dc.contributor.referee3.fl_str_mv Nakano, Alberto Yoshihiro
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/7663994105896731
dc.contributor.authorID.fl_str_mv 056.199.767-50
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7640884895085844
dc.contributor.author.fl_str_mv Vital, Tatiane Melo
contributor_str_mv Ynoguti, Carlos Alberto
Ynoguti, Carlos Alberto
Silva, Francisco Jos?e Fraga da
Nakano, Alberto Yoshihiro
dc.subject.por.fl_str_mv Reconhecimento de Fala Robusto; MAP; Coeficiente de Adapta??o
topic Reconhecimento de Fala Robusto; MAP; Coeficiente de Adapta??o
Engenharia - Telecomunica??es
dc.subject.cnpq.fl_str_mv Engenharia - Telecomunica??es
description The mismatch between the acoustic conditions of the training utterances and those experienced by automatic speech recognition systems is one of the responsible factors for its performance degradation when operating in noisy environments. This is a relevant issue in the current reality with increasing use of these systems on mobile devices. Among the various techniques proposed in the literature to minimize this challenge, the adaptation based on Maximum a Posteriori criteria (MAP) stands out where the acoustic models from training stage can be adapted to the noise condition (type and level) experienced by the system. In this approach, noise samples are used to modify the parameters of the acoustics models to maximize the word accuracy. The intensity of this modi?cation depends on an adaptation coeficient which is usually calculated empirically through a grid search. In this dissertation, a modeling of how the great values of these coe?cients behave according the type and level of noise is performed. From this result, an algorithm to determine an appropriate value for it is proposed. It is based on the parametric adjustment by application of logistic curve minimizing the processing time. The adaptation coe?cient provided by this algorithm does not lead the maximum word accuracy for all cases, but it always provides gain. The experimental results show an gain of 3% on word accuracy.
publishDate 2013
dc.date.issued.fl_str_mv 2013-09-30
dc.date.accessioned.fl_str_mv 2016-07-05T21:00:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Vital, Tatiane Melo. Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala. 2013. [90]. Disserta????o( Programa 1) - Instituto Nacional de Telecomunicacoes, [Santa Rita do Sapuca?] .
dc.identifier.uri.fl_str_mv http://tede.inatel.br:8080/tede/handle/tede/32
identifier_str_mv Vital, Tatiane Melo. Modelamento de coeficientes de adapta??o pra sistemas de reconhecimento autom?tifco de fala. 2013. [90]. Disserta????o( Programa 1) - Instituto Nacional de Telecomunicacoes, [Santa Rita do Sapuca?] .
url http://tede.inatel.br:8080/tede/handle/tede/32
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Nacional de Telecomunica??es
dc.publisher.program.fl_str_mv Mestrado em Engenharia de Telecomunica??es
dc.publisher.initials.fl_str_mv INATEL
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto Nacional de Telecomunica??es
publisher.none.fl_str_mv Instituto Nacional de Telecomunica??es
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da INATEL
instname:Instituto Nacional de Telecomunicações (INATEL)
instacron:INATEL
instname_str Instituto Nacional de Telecomunicações (INATEL)
instacron_str INATEL
institution INATEL
reponame_str Biblioteca Digital de Teses e Dissertações da INATEL
collection Biblioteca Digital de Teses e Dissertações da INATEL
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/32/6/Disserta%C3%A7%C3%A3o+V.Final+Tatiane+Vital.pdf.txt
http://localhost:8080/tede/bitstream/tede/32/7/Disserta%C3%A7%C3%A3o+V.Final+Tatiane+Vital.pdf.jpg
http://localhost:8080/tede/bitstream/tede/32/1/license.txt
http://localhost:8080/tede/bitstream/tede/32/2/license_url
http://localhost:8080/tede/bitstream/tede/32/3/license_text
http://localhost:8080/tede/bitstream/tede/32/4/license_rdf
http://localhost:8080/tede/bitstream/tede/32/5/Disserta%C3%A7%C3%A3o+V.Final+Tatiane+Vital.pdf
bitstream.checksum.fl_str_mv 1b548ae6812b634688af313ecdd81cd1
2a7a3e12c0cf3e04293d736adf0861be
c6279291b293f0db82678eaa73a27769
587cd8ffae15c8598ed3c46d248a3f38
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
46830da6d95b346332b41987c4e63a73
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da INATEL - Instituto Nacional de Telecomunicações (INATEL)
repository.mail.fl_str_mv biblioteca@inatel.br || biblioteca.atendimento@inatel.br
_version_ 1800214222863335424