Uncertainty evaluation for in flight radiometric calibration of earth observation sensors

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Cibele Teixeira Pinto
Orientador(a): Flávio Jorge Ponzoni, Ruy Morgado de Castro
Banca de defesa: João Antonio Lorenzzetti, Elisabete Carla Moraes, Vito Roberto Vanin, Romero da Costa Moreira
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Instituto Nacional de Pesquisas Espaciais (INPE)
Programa de Pós-Graduação: Programa de Pós-Graduação do INPE em Sensoriamento Remoto
Departamento: Não Informado pela instituição
País: BR
Link de acesso: http://urlib.net/sid.inpe.br/mtc-m21b/2016/07.01.14.30
Resumo: The absolute radiometric calibration is a prerequisite for creating high-quality science data, and consequently, higher-level Earth observation sensors products. The radiometric calibration uncertainty is the key that describes the reliability of calibration results. The main objective of this present work was to develop a method to evaluate the uncertainties inherent in the in-flight absolute radiometric calibration of Earth observation sensors. The methodology developed and tested confirms the hypothesis that the method proposed here is compatible and comparable with other methods practiced by the international science community of satellite radiometric calibration. The uncertainties were determined for two methods of absolute radiometric calibration: reflectance based approach and cross-calibration method. The reflectance-based approach was performed using four different reference surfaces: (a) west part of the Bahia State, Brazil; (b) Atacama Desert, Chile; (c) Algodones Dunes, USA; and (d) South Dakota State University (SDSU) site, USA. Regarding the reflectance-based approach, the main sources of uncertainty are: (a) the instruments used for the reference surface characterization; (b) atmosphere characterization parameters; (c) surface reflectance factor; and (d) radiative transfer code (MODTRAN). The spectroradiometer instrumental uncertainties in laboratory were lower than 1\%. The reference panel relative uncertainties were less than 0.25\%. The columnar water vapor was derived from the spectral band of the solar photometer centered on 940 nm with an uncertainty lower than 5\%. The aerosol optical depth relative uncertainties ranged from 2 12\% in Brazil, 1 5\% in Chile, 1-11\% in Algodones Dunes and less than 1.2\% in SDSU site. The most important information related to the reflectance based method is the retrieved surface reflectance factor at the time of sensor overpass the site measured in field. The relative uncertainty of the Algodones Dunes and Atacama Desert reflectance factor was lower than 5\%; and the relative uncertainty of Brazil and SDSU reflectance factor ranged from 3\% to 10\%. The second major source of uncertainty was the accuracy of MODTRAN (2\%). The final uncertainty of the TOA radiance predicted by MODTRAN in Brazil and in SDSU site was lower than 10\%. The final uncertainty of the TOA radiance predicted by MODTRAN in Atacama Desert and in Algodones Dunes site was lower than 5.5\%. These values are the overall total uncertainty of the reflectance based method in the spectral range of 350 to 2400 nm. The cross calibration between both MUX and WFI on-board CBERS 4 and the OLI on board Landsat-8 was performed using the Libya-4 and Atacama Desert sites. During the cross calibration it is necessary to correct the intrinsic offsets between two sensors caused by Spectral Response Function (SRF) mismatches using a spectral band adjustment factor (SBAF). Thus, one of the sources of uncertainty in the cross calibration is the SBAF, which depend on the uncertainty of the target spectral profile and the SRF uncertainty of the two sensors. Here, the SBAF was estimated with an uncertainty lower than 2\%. The overall total uncertainty achieved here with cross calibration method using the Libya-4 and Atacama Desert sites was less than 6.5\%. The dominant source of uncertainty in cross calibration is the uncertainty associated with the sensor selected as reference. The OLI produces data calibrated to an uncertainty of less than 5\% in terms of radiance. Brazil now has a quantitative indication of the quality of the absolute calibration final results. In addition, the country now has autonomy and reliability in the data provided by sensors of national Earth observation program.
id INPE_421a28838bd52a8c83e87b423eafdfdc
oai_identifier_str oai:urlib.net:sid.inpe.br/mtc-m21b/2016/07.01.14.30.43-0
network_acronym_str INPE
network_name_str Biblioteca Digital de Teses e Dissertações do INPE
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUncertainty evaluation for in flight radiometric calibration of earth observation sensorsAvaliação da incerteza na calibração radiométrica de sensores de observação da terra2016-07-07Flávio Jorge PonzoniRuy Morgado de CastroJoão Antonio LorenzzettiElisabete Carla MoraesVito Roberto VaninRomero da Costa MoreiraCibele Teixeira PintoInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Sensoriamento RemotoINPEBRradiometric calibrationuncertaintiesreflectance-based approachcross-calibrationorbital sensorcalibração radiométricaincertezascalibração cruzadasensor orbitalThe absolute radiometric calibration is a prerequisite for creating high-quality science data, and consequently, higher-level Earth observation sensors products. The radiometric calibration uncertainty is the key that describes the reliability of calibration results. The main objective of this present work was to develop a method to evaluate the uncertainties inherent in the in-flight absolute radiometric calibration of Earth observation sensors. The methodology developed and tested confirms the hypothesis that the method proposed here is compatible and comparable with other methods practiced by the international science community of satellite radiometric calibration. The uncertainties were determined for two methods of absolute radiometric calibration: reflectance based approach and cross-calibration method. The reflectance-based approach was performed using four different reference surfaces: (a) west part of the Bahia State, Brazil; (b) Atacama Desert, Chile; (c) Algodones Dunes, USA; and (d) South Dakota State University (SDSU) site, USA. Regarding the reflectance-based approach, the main sources of uncertainty are: (a) the instruments used for the reference surface characterization; (b) atmosphere characterization parameters; (c) surface reflectance factor; and (d) radiative transfer code (MODTRAN). The spectroradiometer instrumental uncertainties in laboratory were lower than 1\%. The reference panel relative uncertainties were less than 0.25\%. The columnar water vapor was derived from the spectral band of the solar photometer centered on 940 nm with an uncertainty lower than 5\%. The aerosol optical depth relative uncertainties ranged from 2 12\% in Brazil, 1 5\% in Chile, 1-11\% in Algodones Dunes and less than 1.2\% in SDSU site. The most important information related to the reflectance based method is the retrieved surface reflectance factor at the time of sensor overpass the site measured in field. The relative uncertainty of the Algodones Dunes and Atacama Desert reflectance factor was lower than 5\%; and the relative uncertainty of Brazil and SDSU reflectance factor ranged from 3\% to 10\%. The second major source of uncertainty was the accuracy of MODTRAN (2\%). The final uncertainty of the TOA radiance predicted by MODTRAN in Brazil and in SDSU site was lower than 10\%. The final uncertainty of the TOA radiance predicted by MODTRAN in Atacama Desert and in Algodones Dunes site was lower than 5.5\%. These values are the overall total uncertainty of the reflectance based method in the spectral range of 350 to 2400 nm. The cross calibration between both MUX and WFI on-board CBERS 4 and the OLI on board Landsat-8 was performed using the Libya-4 and Atacama Desert sites. During the cross calibration it is necessary to correct the intrinsic offsets between two sensors caused by Spectral Response Function (SRF) mismatches using a spectral band adjustment factor (SBAF). Thus, one of the sources of uncertainty in the cross calibration is the SBAF, which depend on the uncertainty of the target spectral profile and the SRF uncertainty of the two sensors. Here, the SBAF was estimated with an uncertainty lower than 2\%. The overall total uncertainty achieved here with cross calibration method using the Libya-4 and Atacama Desert sites was less than 6.5\%. The dominant source of uncertainty in cross calibration is the uncertainty associated with the sensor selected as reference. The OLI produces data calibrated to an uncertainty of less than 5\% in terms of radiance. Brazil now has a quantitative indication of the quality of the absolute calibration final results. In addition, the country now has autonomy and reliability in the data provided by sensors of national Earth observation program.A capacidade de detectar e quantificar as mudanças na superfície terrestre utilizando dados de sensoriamento remoto depende de sensores de observação da Terra que forneçam medições precisas e consistentes ao longo do tempo. Uma etapa essencial para garantir esta qualidade e consistência nos dados é a realização da calibração radiométrica absoluta, cuja confiabilidade é quantificada por meio do cálculo das incertezas envolvidas no processo. O objetivo principal deste trabalho é apresentar um método para avaliar as incertezas inerentes às missões de calibração radiométrica absoluta de sensores de observação da Terra após seu lançamento. A metodologia desenvolvida e testada confirma a hipótese de que o método proposto é compatível e comparável com outros métodos praticados pela comunidade científica internacional de calibração radiométrica de sensores abordo de satélite. As incertezas foram determinadas para dois métodos de calibração radiométrica absoluta: reflectance-based e calibração cruzada. O método reflectance-based foi realizado em quatro superfícies de referência distintas: (a) oeste do estado da Bahia, Brasil; (b) Deserto do Atacama, Chile; (c) Algodones Dunes, EUA; e (d) South Dakota State University (SDSU), EUA. As principais fontes de incerteza relacionadas ao método reflectance based são: (a) os instrumentos utilizados para a caracterização da superfície de referência; (b) os parâmetros de caracterização da atmosfera; (c) o fator de reflectância da superfície; e (d) o modelo de transferência radiativa (MODTRAN). As incertezas instrumentais relacionadas ao espectrorradiômetro foram menores que 1\%. As incertezas da placa de referência foram menores que 0,25\%. O conteúdo de vapor dágua foi derivado da banda espectral do fotômetro solar centralizada em 940 nm com uma incerteza menor que 5\%. A incerteza relativa da profundidade óptica do aerossol variou entre 2 e 12\% no Brasil, 1 a 5\% no Chile, 1 a 11\% em Algodones Dunes e foi menor que 1,2 \% na SDSU. A informação de maior importância do método reflectance-based é o fator de reflectância da superfície medido no momento em que o sensor sobrevoou a superfície em campo. A incerteza relativa do fator de reflectância de Algodones Dunes e do Deserto do Atacama foi menor que 5\% enquanto do Brasil e na SDSU variou entre 3 e 10\%. A segunda maior fonte de incerteza se referiu à precisão do MODTRAN (2\%). A incerteza final da radiância no topo da atmosfera estimada pelo MODTRAN no Brasil e na SDSU foi menor que 10\%. A incerteza final da radiância no topo da atmosfera estimada pelo MODTRAN no Deserto do Atacama e em Algodones Dunes foi menor que 5,5\%. Esses valores correspondem à incerteza total global do método reflectance based para a região espectral entre 350 e 2400 nm. A calibração cruzada dos sensores MUX e WFI a bordo do CBERS-4 com o sensor OLI a bordo do Landsat-8 foi realizada utilizando duas áreas distintas: Libya-4 e o Deserto do Atacama. Durante o processo de calibração cruzada é necessário corrigir as diferenças das funções de resposta espectral (SRF) dos dois sensores envolvidos. Essa correção é realizada mediante aplicação do fator de ajuste de banda espectral (SBAF). Assim, uma das fontes de incertezas no processo de calibração cruzada é o próprio SBAF, no qual depende da incerteza do perfil espectral do alvo e da incerteza da SRF dos dois sensores (sensor de referência e sensor a ser calibrado). Neste trabalho, o SBAF foi estimado com uma incerteza menor que 2\%. A incerteza total global no método de calibração cruzada utilizando o Deserto do Atacama e a Líbya-4 foi menor que 6,5\%. A fonte de incerteza dominante na calibração cruzada é a incerteza associada ao sensor selecionado como referência. O sensor OLI produz dados calibrados de radiância com uma incerteza menor que 5\%. O Brasil agora possui uma indicação quantitativa da qualidade do resultado final da calibração radiométrica absoluta. Além disso, o país também passa a possuir autonomia e confiabilidade nos dados disponibilizados por sensores do programa nacional de observação da Terra, como por exemplo, o CBERS 4.http://urlib.net/sid.inpe.br/mtc-m21b/2016/07.01.14.30info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:55:08Zoai:urlib.net:sid.inpe.br/mtc-m21b/2016/07.01.14.30.43-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:55:09.506Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false
dc.title.en.fl_str_mv Uncertainty evaluation for in flight radiometric calibration of earth observation sensors
dc.title.alternative.pt.fl_str_mv Avaliação da incerteza na calibração radiométrica de sensores de observação da terra
title Uncertainty evaluation for in flight radiometric calibration of earth observation sensors
spellingShingle Uncertainty evaluation for in flight radiometric calibration of earth observation sensors
Cibele Teixeira Pinto
title_short Uncertainty evaluation for in flight radiometric calibration of earth observation sensors
title_full Uncertainty evaluation for in flight radiometric calibration of earth observation sensors
title_fullStr Uncertainty evaluation for in flight radiometric calibration of earth observation sensors
title_full_unstemmed Uncertainty evaluation for in flight radiometric calibration of earth observation sensors
title_sort Uncertainty evaluation for in flight radiometric calibration of earth observation sensors
author Cibele Teixeira Pinto
author_facet Cibele Teixeira Pinto
author_role author
dc.contributor.advisor1.fl_str_mv Flávio Jorge Ponzoni
dc.contributor.advisor2.fl_str_mv Ruy Morgado de Castro
dc.contributor.referee1.fl_str_mv João Antonio Lorenzzetti
dc.contributor.referee2.fl_str_mv Elisabete Carla Moraes
dc.contributor.referee3.fl_str_mv Vito Roberto Vanin
dc.contributor.referee4.fl_str_mv Romero da Costa Moreira
dc.contributor.author.fl_str_mv Cibele Teixeira Pinto
contributor_str_mv Flávio Jorge Ponzoni
Ruy Morgado de Castro
João Antonio Lorenzzetti
Elisabete Carla Moraes
Vito Roberto Vanin
Romero da Costa Moreira
dc.description.abstract.por.fl_txt_mv The absolute radiometric calibration is a prerequisite for creating high-quality science data, and consequently, higher-level Earth observation sensors products. The radiometric calibration uncertainty is the key that describes the reliability of calibration results. The main objective of this present work was to develop a method to evaluate the uncertainties inherent in the in-flight absolute radiometric calibration of Earth observation sensors. The methodology developed and tested confirms the hypothesis that the method proposed here is compatible and comparable with other methods practiced by the international science community of satellite radiometric calibration. The uncertainties were determined for two methods of absolute radiometric calibration: reflectance based approach and cross-calibration method. The reflectance-based approach was performed using four different reference surfaces: (a) west part of the Bahia State, Brazil; (b) Atacama Desert, Chile; (c) Algodones Dunes, USA; and (d) South Dakota State University (SDSU) site, USA. Regarding the reflectance-based approach, the main sources of uncertainty are: (a) the instruments used for the reference surface characterization; (b) atmosphere characterization parameters; (c) surface reflectance factor; and (d) radiative transfer code (MODTRAN). The spectroradiometer instrumental uncertainties in laboratory were lower than 1\%. The reference panel relative uncertainties were less than 0.25\%. The columnar water vapor was derived from the spectral band of the solar photometer centered on 940 nm with an uncertainty lower than 5\%. The aerosol optical depth relative uncertainties ranged from 2 12\% in Brazil, 1 5\% in Chile, 1-11\% in Algodones Dunes and less than 1.2\% in SDSU site. The most important information related to the reflectance based method is the retrieved surface reflectance factor at the time of sensor overpass the site measured in field. The relative uncertainty of the Algodones Dunes and Atacama Desert reflectance factor was lower than 5\%; and the relative uncertainty of Brazil and SDSU reflectance factor ranged from 3\% to 10\%. The second major source of uncertainty was the accuracy of MODTRAN (2\%). The final uncertainty of the TOA radiance predicted by MODTRAN in Brazil and in SDSU site was lower than 10\%. The final uncertainty of the TOA radiance predicted by MODTRAN in Atacama Desert and in Algodones Dunes site was lower than 5.5\%. These values are the overall total uncertainty of the reflectance based method in the spectral range of 350 to 2400 nm. The cross calibration between both MUX and WFI on-board CBERS 4 and the OLI on board Landsat-8 was performed using the Libya-4 and Atacama Desert sites. During the cross calibration it is necessary to correct the intrinsic offsets between two sensors caused by Spectral Response Function (SRF) mismatches using a spectral band adjustment factor (SBAF). Thus, one of the sources of uncertainty in the cross calibration is the SBAF, which depend on the uncertainty of the target spectral profile and the SRF uncertainty of the two sensors. Here, the SBAF was estimated with an uncertainty lower than 2\%. The overall total uncertainty achieved here with cross calibration method using the Libya-4 and Atacama Desert sites was less than 6.5\%. The dominant source of uncertainty in cross calibration is the uncertainty associated with the sensor selected as reference. The OLI produces data calibrated to an uncertainty of less than 5\% in terms of radiance. Brazil now has a quantitative indication of the quality of the absolute calibration final results. In addition, the country now has autonomy and reliability in the data provided by sensors of national Earth observation program.
A capacidade de detectar e quantificar as mudanças na superfície terrestre utilizando dados de sensoriamento remoto depende de sensores de observação da Terra que forneçam medições precisas e consistentes ao longo do tempo. Uma etapa essencial para garantir esta qualidade e consistência nos dados é a realização da calibração radiométrica absoluta, cuja confiabilidade é quantificada por meio do cálculo das incertezas envolvidas no processo. O objetivo principal deste trabalho é apresentar um método para avaliar as incertezas inerentes às missões de calibração radiométrica absoluta de sensores de observação da Terra após seu lançamento. A metodologia desenvolvida e testada confirma a hipótese de que o método proposto é compatível e comparável com outros métodos praticados pela comunidade científica internacional de calibração radiométrica de sensores abordo de satélite. As incertezas foram determinadas para dois métodos de calibração radiométrica absoluta: reflectance-based e calibração cruzada. O método reflectance-based foi realizado em quatro superfícies de referência distintas: (a) oeste do estado da Bahia, Brasil; (b) Deserto do Atacama, Chile; (c) Algodones Dunes, EUA; e (d) South Dakota State University (SDSU), EUA. As principais fontes de incerteza relacionadas ao método reflectance based são: (a) os instrumentos utilizados para a caracterização da superfície de referência; (b) os parâmetros de caracterização da atmosfera; (c) o fator de reflectância da superfície; e (d) o modelo de transferência radiativa (MODTRAN). As incertezas instrumentais relacionadas ao espectrorradiômetro foram menores que 1\%. As incertezas da placa de referência foram menores que 0,25\%. O conteúdo de vapor dágua foi derivado da banda espectral do fotômetro solar centralizada em 940 nm com uma incerteza menor que 5\%. A incerteza relativa da profundidade óptica do aerossol variou entre 2 e 12\% no Brasil, 1 a 5\% no Chile, 1 a 11\% em Algodones Dunes e foi menor que 1,2 \% na SDSU. A informação de maior importância do método reflectance-based é o fator de reflectância da superfície medido no momento em que o sensor sobrevoou a superfície em campo. A incerteza relativa do fator de reflectância de Algodones Dunes e do Deserto do Atacama foi menor que 5\% enquanto do Brasil e na SDSU variou entre 3 e 10\%. A segunda maior fonte de incerteza se referiu à precisão do MODTRAN (2\%). A incerteza final da radiância no topo da atmosfera estimada pelo MODTRAN no Brasil e na SDSU foi menor que 10\%. A incerteza final da radiância no topo da atmosfera estimada pelo MODTRAN no Deserto do Atacama e em Algodones Dunes foi menor que 5,5\%. Esses valores correspondem à incerteza total global do método reflectance based para a região espectral entre 350 e 2400 nm. A calibração cruzada dos sensores MUX e WFI a bordo do CBERS-4 com o sensor OLI a bordo do Landsat-8 foi realizada utilizando duas áreas distintas: Libya-4 e o Deserto do Atacama. Durante o processo de calibração cruzada é necessário corrigir as diferenças das funções de resposta espectral (SRF) dos dois sensores envolvidos. Essa correção é realizada mediante aplicação do fator de ajuste de banda espectral (SBAF). Assim, uma das fontes de incertezas no processo de calibração cruzada é o próprio SBAF, no qual depende da incerteza do perfil espectral do alvo e da incerteza da SRF dos dois sensores (sensor de referência e sensor a ser calibrado). Neste trabalho, o SBAF foi estimado com uma incerteza menor que 2\%. A incerteza total global no método de calibração cruzada utilizando o Deserto do Atacama e a Líbya-4 foi menor que 6,5\%. A fonte de incerteza dominante na calibração cruzada é a incerteza associada ao sensor selecionado como referência. O sensor OLI produz dados calibrados de radiância com uma incerteza menor que 5\%. O Brasil agora possui uma indicação quantitativa da qualidade do resultado final da calibração radiométrica absoluta. Além disso, o país também passa a possuir autonomia e confiabilidade nos dados disponibilizados por sensores do programa nacional de observação da Terra, como por exemplo, o CBERS 4.
description The absolute radiometric calibration is a prerequisite for creating high-quality science data, and consequently, higher-level Earth observation sensors products. The radiometric calibration uncertainty is the key that describes the reliability of calibration results. The main objective of this present work was to develop a method to evaluate the uncertainties inherent in the in-flight absolute radiometric calibration of Earth observation sensors. The methodology developed and tested confirms the hypothesis that the method proposed here is compatible and comparable with other methods practiced by the international science community of satellite radiometric calibration. The uncertainties were determined for two methods of absolute radiometric calibration: reflectance based approach and cross-calibration method. The reflectance-based approach was performed using four different reference surfaces: (a) west part of the Bahia State, Brazil; (b) Atacama Desert, Chile; (c) Algodones Dunes, USA; and (d) South Dakota State University (SDSU) site, USA. Regarding the reflectance-based approach, the main sources of uncertainty are: (a) the instruments used for the reference surface characterization; (b) atmosphere characterization parameters; (c) surface reflectance factor; and (d) radiative transfer code (MODTRAN). The spectroradiometer instrumental uncertainties in laboratory were lower than 1\%. The reference panel relative uncertainties were less than 0.25\%. The columnar water vapor was derived from the spectral band of the solar photometer centered on 940 nm with an uncertainty lower than 5\%. The aerosol optical depth relative uncertainties ranged from 2 12\% in Brazil, 1 5\% in Chile, 1-11\% in Algodones Dunes and less than 1.2\% in SDSU site. The most important information related to the reflectance based method is the retrieved surface reflectance factor at the time of sensor overpass the site measured in field. The relative uncertainty of the Algodones Dunes and Atacama Desert reflectance factor was lower than 5\%; and the relative uncertainty of Brazil and SDSU reflectance factor ranged from 3\% to 10\%. The second major source of uncertainty was the accuracy of MODTRAN (2\%). The final uncertainty of the TOA radiance predicted by MODTRAN in Brazil and in SDSU site was lower than 10\%. The final uncertainty of the TOA radiance predicted by MODTRAN in Atacama Desert and in Algodones Dunes site was lower than 5.5\%. These values are the overall total uncertainty of the reflectance based method in the spectral range of 350 to 2400 nm. The cross calibration between both MUX and WFI on-board CBERS 4 and the OLI on board Landsat-8 was performed using the Libya-4 and Atacama Desert sites. During the cross calibration it is necessary to correct the intrinsic offsets between two sensors caused by Spectral Response Function (SRF) mismatches using a spectral band adjustment factor (SBAF). Thus, one of the sources of uncertainty in the cross calibration is the SBAF, which depend on the uncertainty of the target spectral profile and the SRF uncertainty of the two sensors. Here, the SBAF was estimated with an uncertainty lower than 2\%. The overall total uncertainty achieved here with cross calibration method using the Libya-4 and Atacama Desert sites was less than 6.5\%. The dominant source of uncertainty in cross calibration is the uncertainty associated with the sensor selected as reference. The OLI produces data calibrated to an uncertainty of less than 5\% in terms of radiance. Brazil now has a quantitative indication of the quality of the absolute calibration final results. In addition, the country now has autonomy and reliability in the data provided by sensors of national Earth observation program.
publishDate 2016
dc.date.issued.fl_str_mv 2016-07-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://urlib.net/sid.inpe.br/mtc-m21b/2016/07.01.14.30
url http://urlib.net/sid.inpe.br/mtc-m21b/2016/07.01.14.30
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.publisher.program.fl_str_mv Programa de Pós-Graduação do INPE em Sensoriamento Remoto
dc.publisher.initials.fl_str_mv INPE
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do INPE
instname:Instituto Nacional de Pesquisas Espaciais (INPE)
instacron:INPE
reponame_str Biblioteca Digital de Teses e Dissertações do INPE
collection Biblioteca Digital de Teses e Dissertações do INPE
instname_str Instituto Nacional de Pesquisas Espaciais (INPE)
instacron_str INPE
institution INPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)
repository.mail.fl_str_mv
publisher_program_txtF_mv Programa de Pós-Graduação do INPE em Sensoriamento Remoto
contributor_advisor1_txtF_mv Flávio Jorge Ponzoni
_version_ 1706805039691988992