Design and analysis of a multivariable robust control system for aircraft gas turbines

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Douglas Felipe Rodrigues da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2202
Resumo: Gas turbine engines are important thermal machines used in industrial and transportation fields. They convert fuel energy into mechanical power or thrust for aerial and maritime vehicles, as well as generate pneumatic and electrical energy that could be used for a large variety of applications. The constant search for fuel burn savings and low pollutant emissions in aviation demands, along with new hardware and material technologies, highly complex engine control systems to optimize fuel consumption throughout the engine operating envelope, and consequently generate more efficient aircraft, in addition to meet the regulatory requirements in terms of safety and performance. These conflicting objectives normally lead to trade-off solutions which are difficult to precisely estimate given the large number of variables involved, including altitude, Mach number, ambient temperature, power and bleed extraction, among others. Therefore, some decisions to characterize the engine controller still reside on experience from previous designs and, as a result, add subjectivity and increase the potential for wrong parameter selection. These control systems significantly contribute to gas turbine performance increase. In this sense, this work proposes the study, design and analysis of multivariable robust controllers for a particular gas turbine engine. Firstly, an algorithmic approach is applied to design an aircraft gas turbine engine controller in a two-degree-of-freedom configuration, obtaining H-infinity robust stabilization. It introduces an optimized loop shape design procedure, with the use of the Genetic Algorithm (GA), to further improve the control system performance, as well as bring the experience applied by controller designers and engineers to an automated process, when setting the parameters to shape the frequency response of the engine control loops. Secondly, a Linear Quadratic Gaussian (LQG) controller, with the Loop Transfer Recovery (LTR) is developed to allow a comparative analysis. The resulting controllers are evaluated by computer simulations under typical operating conditions and compared against each other. Noise immunity is also verified. The complete system is also evaluated against requirements from the aviation industry for commercial aircraft engines. Finally, robustness is evaluated in a similar engine model by generating uncertain state space models based on the boundaries of its nominal model at extreme operating conditions.
id ITA_b26226af2bd8aa7f0b867d7aebe4a149
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2202
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Design and analysis of a multivariable robust control system for aircraft gas turbinesTurbinas a gásMotoresTurbomáquinasEngenharia mecânicaGas turbine engines are important thermal machines used in industrial and transportation fields. They convert fuel energy into mechanical power or thrust for aerial and maritime vehicles, as well as generate pneumatic and electrical energy that could be used for a large variety of applications. The constant search for fuel burn savings and low pollutant emissions in aviation demands, along with new hardware and material technologies, highly complex engine control systems to optimize fuel consumption throughout the engine operating envelope, and consequently generate more efficient aircraft, in addition to meet the regulatory requirements in terms of safety and performance. These conflicting objectives normally lead to trade-off solutions which are difficult to precisely estimate given the large number of variables involved, including altitude, Mach number, ambient temperature, power and bleed extraction, among others. Therefore, some decisions to characterize the engine controller still reside on experience from previous designs and, as a result, add subjectivity and increase the potential for wrong parameter selection. These control systems significantly contribute to gas turbine performance increase. In this sense, this work proposes the study, design and analysis of multivariable robust controllers for a particular gas turbine engine. Firstly, an algorithmic approach is applied to design an aircraft gas turbine engine controller in a two-degree-of-freedom configuration, obtaining H-infinity robust stabilization. It introduces an optimized loop shape design procedure, with the use of the Genetic Algorithm (GA), to further improve the control system performance, as well as bring the experience applied by controller designers and engineers to an automated process, when setting the parameters to shape the frequency response of the engine control loops. Secondly, a Linear Quadratic Gaussian (LQG) controller, with the Loop Transfer Recovery (LTR) is developed to allow a comparative analysis. The resulting controllers are evaluated by computer simulations under typical operating conditions and compared against each other. Noise immunity is also verified. The complete system is also evaluated against requirements from the aviation industry for commercial aircraft engines. Finally, robustness is evaluated in a similar engine model by generating uncertain state space models based on the boundaries of its nominal model at extreme operating conditions.Instituto Tecnológico de AeronáuticaAlberto Adade FilhoJoão Roberto BarbosaDouglas Felipe Rodrigues da Silva2012-12-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2202reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:04:41Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2202http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:38:28.258Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Design and analysis of a multivariable robust control system for aircraft gas turbines
title Design and analysis of a multivariable robust control system for aircraft gas turbines
spellingShingle Design and analysis of a multivariable robust control system for aircraft gas turbines
Douglas Felipe Rodrigues da Silva
Turbinas a gás
Motores
Turbomáquinas
Engenharia mecânica
title_short Design and analysis of a multivariable robust control system for aircraft gas turbines
title_full Design and analysis of a multivariable robust control system for aircraft gas turbines
title_fullStr Design and analysis of a multivariable robust control system for aircraft gas turbines
title_full_unstemmed Design and analysis of a multivariable robust control system for aircraft gas turbines
title_sort Design and analysis of a multivariable robust control system for aircraft gas turbines
author Douglas Felipe Rodrigues da Silva
author_facet Douglas Felipe Rodrigues da Silva
author_role author
dc.contributor.none.fl_str_mv Alberto Adade Filho
João Roberto Barbosa
dc.contributor.author.fl_str_mv Douglas Felipe Rodrigues da Silva
dc.subject.por.fl_str_mv Turbinas a gás
Motores
Turbomáquinas
Engenharia mecânica
topic Turbinas a gás
Motores
Turbomáquinas
Engenharia mecânica
dc.description.none.fl_txt_mv Gas turbine engines are important thermal machines used in industrial and transportation fields. They convert fuel energy into mechanical power or thrust for aerial and maritime vehicles, as well as generate pneumatic and electrical energy that could be used for a large variety of applications. The constant search for fuel burn savings and low pollutant emissions in aviation demands, along with new hardware and material technologies, highly complex engine control systems to optimize fuel consumption throughout the engine operating envelope, and consequently generate more efficient aircraft, in addition to meet the regulatory requirements in terms of safety and performance. These conflicting objectives normally lead to trade-off solutions which are difficult to precisely estimate given the large number of variables involved, including altitude, Mach number, ambient temperature, power and bleed extraction, among others. Therefore, some decisions to characterize the engine controller still reside on experience from previous designs and, as a result, add subjectivity and increase the potential for wrong parameter selection. These control systems significantly contribute to gas turbine performance increase. In this sense, this work proposes the study, design and analysis of multivariable robust controllers for a particular gas turbine engine. Firstly, an algorithmic approach is applied to design an aircraft gas turbine engine controller in a two-degree-of-freedom configuration, obtaining H-infinity robust stabilization. It introduces an optimized loop shape design procedure, with the use of the Genetic Algorithm (GA), to further improve the control system performance, as well as bring the experience applied by controller designers and engineers to an automated process, when setting the parameters to shape the frequency response of the engine control loops. Secondly, a Linear Quadratic Gaussian (LQG) controller, with the Loop Transfer Recovery (LTR) is developed to allow a comparative analysis. The resulting controllers are evaluated by computer simulations under typical operating conditions and compared against each other. Noise immunity is also verified. The complete system is also evaluated against requirements from the aviation industry for commercial aircraft engines. Finally, robustness is evaluated in a similar engine model by generating uncertain state space models based on the boundaries of its nominal model at extreme operating conditions.
description Gas turbine engines are important thermal machines used in industrial and transportation fields. They convert fuel energy into mechanical power or thrust for aerial and maritime vehicles, as well as generate pneumatic and electrical energy that could be used for a large variety of applications. The constant search for fuel burn savings and low pollutant emissions in aviation demands, along with new hardware and material technologies, highly complex engine control systems to optimize fuel consumption throughout the engine operating envelope, and consequently generate more efficient aircraft, in addition to meet the regulatory requirements in terms of safety and performance. These conflicting objectives normally lead to trade-off solutions which are difficult to precisely estimate given the large number of variables involved, including altitude, Mach number, ambient temperature, power and bleed extraction, among others. Therefore, some decisions to characterize the engine controller still reside on experience from previous designs and, as a result, add subjectivity and increase the potential for wrong parameter selection. These control systems significantly contribute to gas turbine performance increase. In this sense, this work proposes the study, design and analysis of multivariable robust controllers for a particular gas turbine engine. Firstly, an algorithmic approach is applied to design an aircraft gas turbine engine controller in a two-degree-of-freedom configuration, obtaining H-infinity robust stabilization. It introduces an optimized loop shape design procedure, with the use of the Genetic Algorithm (GA), to further improve the control system performance, as well as bring the experience applied by controller designers and engineers to an automated process, when setting the parameters to shape the frequency response of the engine control loops. Secondly, a Linear Quadratic Gaussian (LQG) controller, with the Loop Transfer Recovery (LTR) is developed to allow a comparative analysis. The resulting controllers are evaluated by computer simulations under typical operating conditions and compared against each other. Noise immunity is also verified. The complete system is also evaluated against requirements from the aviation industry for commercial aircraft engines. Finally, robustness is evaluated in a similar engine model by generating uncertain state space models based on the boundaries of its nominal model at extreme operating conditions.
publishDate 2012
dc.date.none.fl_str_mv 2012-12-04
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2202
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2202
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Turbinas a gás
Motores
Turbomáquinas
Engenharia mecânica
_version_ 1706804998183059456