Comparative Study of Transformers in Spatiotemporal Precipitation Forecasting
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Laboratório Nacional de Computação Científica
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA) Brasil LNCC Programa de pós-graduação em Modelagem Computacional |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://tede.lncc.br/handle/tede/404 |
Resumo: | Deep Learning has seen significant advancements in recent times, with various architectures excelling in different areas. Among these, the Transformer architecture stands out, initially for its success in natural language processing, thanks to its attention mechanisms based on an encoder-decoder model. Subsequently, studies have emerged exploring the applicability of this architecture in time series forecasting, yielding promising results. However, the high consumption of computational resources, such as time and memory, has led to the proposal of alternative models that seek to achieve comparable or superior performance using simpler architectures, such as linear models. Precipitation forecasting is an important challenge, especially in regions with unstable climatic conditions, such as Rio de Janeiro, where intense rain can occur suddenly. The ability to predict these rainfall patterns, particularly extreme events, is crucial for mitigating the adverse impacts of these phenomena. Although most studies on Transformers have focused on simpler datasets, such as traffic or temperature, precipitation forecasting has proven to be more challenging, often yielding inferior performance in many cases. Moreover, few studies address precipitation forecasting, and they generally focus on long-term predictions, using precipitation aggregated by day, week, or month. The objective of this study is to investigate the applicability of Transformer-based models for short- and medium-term precipitation forecasting. We used spatiotemporal precipitation data from Australia, available on the Kaggle platform, to evaluate the efficiency of these models in predicting daily aggregated precipitation. Additionally, we employed data from the city of Rio de Janeiro, obtained through INMET meteorological stations via the Rionowcast project, with data aggregated hourly. The use of two datasets allows for the assessment of whether the models’ performance is influenced by data quality or the processing used. Initially, two models were tested with different spatiotemporal representations. Since there was no significant difference between the data processing methods, a new test was conducted with all the implemented models. The evaluation was carried out using Mean Squared Error (MSE) and complementary graphs. The results showed that the DLinear model, despite being a simpler architecture, stood out by focusing on the target variable for prediction, achieving the best MSE and the shortest execution time. However, the tests indicated that the type of data used is not sufficient to unlock the full potential of the other architectures, with little difference in performance among the Transformer models tested, suggesting potential issues related to data processing. |
| id |
LNCC_b176b557ce6b0a50a583ce7c42b4064f |
|---|---|
| oai_identifier_str |
oai:tede-server.lncc.br:tede/404 |
| network_acronym_str |
LNCC |
| network_name_str |
Biblioteca Digital de Teses e Dissertações do LNCC |
| repository_id_str |
|
| spelling |
Comparative Study of Transformers in Spatiotemporal Precipitation ForecastingEstudo Comparativo de Transformadores na Previsão de Precipitação EspaçotemporalDeep Learning.TransformersPrecipitationTime Series ForecastSpatiotemporal dataCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAODeep Learning has seen significant advancements in recent times, with various architectures excelling in different areas. Among these, the Transformer architecture stands out, initially for its success in natural language processing, thanks to its attention mechanisms based on an encoder-decoder model. Subsequently, studies have emerged exploring the applicability of this architecture in time series forecasting, yielding promising results. However, the high consumption of computational resources, such as time and memory, has led to the proposal of alternative models that seek to achieve comparable or superior performance using simpler architectures, such as linear models. Precipitation forecasting is an important challenge, especially in regions with unstable climatic conditions, such as Rio de Janeiro, where intense rain can occur suddenly. The ability to predict these rainfall patterns, particularly extreme events, is crucial for mitigating the adverse impacts of these phenomena. Although most studies on Transformers have focused on simpler datasets, such as traffic or temperature, precipitation forecasting has proven to be more challenging, often yielding inferior performance in many cases. Moreover, few studies address precipitation forecasting, and they generally focus on long-term predictions, using precipitation aggregated by day, week, or month. The objective of this study is to investigate the applicability of Transformer-based models for short- and medium-term precipitation forecasting. We used spatiotemporal precipitation data from Australia, available on the Kaggle platform, to evaluate the efficiency of these models in predicting daily aggregated precipitation. Additionally, we employed data from the city of Rio de Janeiro, obtained through INMET meteorological stations via the Rionowcast project, with data aggregated hourly. The use of two datasets allows for the assessment of whether the models’ performance is influenced by data quality or the processing used. Initially, two models were tested with different spatiotemporal representations. Since there was no significant difference between the data processing methods, a new test was conducted with all the implemented models. The evaluation was carried out using Mean Squared Error (MSE) and complementary graphs. The results showed that the DLinear model, despite being a simpler architecture, stood out by focusing on the target variable for prediction, achieving the best MSE and the shortest execution time. However, the tests indicated that the type of data used is not sufficient to unlock the full potential of the other architectures, with little difference in performance among the Transformer models tested, suggesting potential issues related to data processing.O Deep Learning tem experimentado avanços significativos nos dias atuais, com várias arquiteturas se destacando em diferentes áreas. Entre essas, a arquitetura Transformer se destaca, inicialmente por seu sucesso no processamento de linguagem natural, graças aos seus mecanismos de atenção baseados em um modelo encoder-decoder. Posteriormente, surgiram estudos que exploram a aplicabilidade dessa arquitetura na predição de séries temporais, obtendo resultados promissores. No entanto, o alto consumo de recursos computacionais, como tempo e memória, tem levado à proposta de modelos alternativos que buscam alcançar desempenhos comparáveis ou superiores utilizando arquiteturas mais simples, como modelos lineares. A previsão de precipitação é um desafio importante, especialmente em regiões com condições climáticas instáveis, como o Rio de Janeiro, onde chuvas intensas podem ocorrer de repente. A capacidade de prever esses padrões de chuva, em particular eventos extremos, é crucial para mitigar os impactos adversos desses fenômenos. Embora a maioria dos estudos sobre Transformers tenha se concentrado em dados mais simples, como tráfego ou temperatura, a predição de precipitação tem se mostrado mais desafiadora, com desempenho inferior em muitos casos. Além disso, poucos estudos abordam a predição de precipitação, e geralmente focam em previsões de longo prazo, utilizando precipitação agregada por dia, semana ou mês. O objetivo deste estudo é investigar a aplicabilidade de modelos baseados em Transformers para a predição de precipitação em curto e médio prazo. Utilizamos dados espaço-temporais de precipitação na Austrália, disponíveis na plataforma Kaggle, para avaliar a eficiência desses modelos na predição de precipitação diária agregada. Além disso, empregamos dados da cidade do Rio de Janeiro, obtidos através de estações meteorológicas do INMET pelo projeto Rionowcast, com dados agregados por hora. A utilização de dois conjuntos de dados permite avaliar se o desempenho dos modelos é influenciado pela qualidade dos dados ou pelo processamento utilizado. Inicialmente, dois modelos foram testados com diferentes representações espaço-temporais. Como não houve diferença significativa entre os processamentos dos dados, um novo teste foi realizado com todos os modelos implementados. A avaliação foi realizada por meio do Mean Squared Error (MSE) e gráficos complementares. Os resultados demonstraram que o modelo DLinear, apesar de ser uma arquitetura mais simples, se destacou por focar na variável alvo de predição, alcançando o melhor MSE e o menor tempo de execução. No entanto, os testes indicaram que o tipo de dado utilizado não é suficiente para ativar o potencial completo das outras arquiteturas, havendo pouca diferença de desempenho entre os modelos Transformer testados, o que sugere possíveis problemas relacionados ao processamento dos dados.Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPQLaboratório Nacional de Computação CientíficaCoordenação de Pós-Graduação e Aperfeiçoamento (COPGA)BrasilLNCCPrograma de pós-graduação em Modelagem ComputacionalPorto , Fábio André MachadoGiraldi, Gilson AntonioMacedo , José Antônio de FernandesSilva, Eduardo Bezerra daMoura, Mauro Sérgio dos Santos2024-12-03T19:07:00Z2024-08-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMOURA, Mauro Sérgio dos Santos. Comparative study of tansformers in spatiotemporal precipitation forecasting. Petrópolis, RJ, 2024. 135 f. Dissertação (Mestrado em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2024.https://tede.lncc.br/handle/tede/404enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCC2025-01-24T16:29:29Zoai:tede-server.lncc.br:tede/404Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2025-01-24T16:29:29Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false |
| dc.title.none.fl_str_mv |
Comparative Study of Transformers in Spatiotemporal Precipitation Forecasting Estudo Comparativo de Transformadores na Previsão de Precipitação Espaçotemporal |
| title |
Comparative Study of Transformers in Spatiotemporal Precipitation Forecasting |
| spellingShingle |
Comparative Study of Transformers in Spatiotemporal Precipitation Forecasting Moura, Mauro Sérgio dos Santos Deep Learning. Transformers Precipitation Time Series Forecast Spatiotemporal data CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Comparative Study of Transformers in Spatiotemporal Precipitation Forecasting |
| title_full |
Comparative Study of Transformers in Spatiotemporal Precipitation Forecasting |
| title_fullStr |
Comparative Study of Transformers in Spatiotemporal Precipitation Forecasting |
| title_full_unstemmed |
Comparative Study of Transformers in Spatiotemporal Precipitation Forecasting |
| title_sort |
Comparative Study of Transformers in Spatiotemporal Precipitation Forecasting |
| author |
Moura, Mauro Sérgio dos Santos |
| author_facet |
Moura, Mauro Sérgio dos Santos |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Porto , Fábio André Machado Giraldi, Gilson Antonio Macedo , José Antônio de Fernandes Silva, Eduardo Bezerra da |
| dc.contributor.author.fl_str_mv |
Moura, Mauro Sérgio dos Santos |
| dc.subject.por.fl_str_mv |
Deep Learning. Transformers Precipitation Time Series Forecast Spatiotemporal data CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
Deep Learning. Transformers Precipitation Time Series Forecast Spatiotemporal data CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
Deep Learning has seen significant advancements in recent times, with various architectures excelling in different areas. Among these, the Transformer architecture stands out, initially for its success in natural language processing, thanks to its attention mechanisms based on an encoder-decoder model. Subsequently, studies have emerged exploring the applicability of this architecture in time series forecasting, yielding promising results. However, the high consumption of computational resources, such as time and memory, has led to the proposal of alternative models that seek to achieve comparable or superior performance using simpler architectures, such as linear models. Precipitation forecasting is an important challenge, especially in regions with unstable climatic conditions, such as Rio de Janeiro, where intense rain can occur suddenly. The ability to predict these rainfall patterns, particularly extreme events, is crucial for mitigating the adverse impacts of these phenomena. Although most studies on Transformers have focused on simpler datasets, such as traffic or temperature, precipitation forecasting has proven to be more challenging, often yielding inferior performance in many cases. Moreover, few studies address precipitation forecasting, and they generally focus on long-term predictions, using precipitation aggregated by day, week, or month. The objective of this study is to investigate the applicability of Transformer-based models for short- and medium-term precipitation forecasting. We used spatiotemporal precipitation data from Australia, available on the Kaggle platform, to evaluate the efficiency of these models in predicting daily aggregated precipitation. Additionally, we employed data from the city of Rio de Janeiro, obtained through INMET meteorological stations via the Rionowcast project, with data aggregated hourly. The use of two datasets allows for the assessment of whether the models’ performance is influenced by data quality or the processing used. Initially, two models were tested with different spatiotemporal representations. Since there was no significant difference between the data processing methods, a new test was conducted with all the implemented models. The evaluation was carried out using Mean Squared Error (MSE) and complementary graphs. The results showed that the DLinear model, despite being a simpler architecture, stood out by focusing on the target variable for prediction, achieving the best MSE and the shortest execution time. However, the tests indicated that the type of data used is not sufficient to unlock the full potential of the other architectures, with little difference in performance among the Transformer models tested, suggesting potential issues related to data processing. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-03T19:07:00Z 2024-08-28 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
MOURA, Mauro Sérgio dos Santos. Comparative study of tansformers in spatiotemporal precipitation forecasting. Petrópolis, RJ, 2024. 135 f. Dissertação (Mestrado em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2024. https://tede.lncc.br/handle/tede/404 |
| identifier_str_mv |
MOURA, Mauro Sérgio dos Santos. Comparative study of tansformers in spatiotemporal precipitation forecasting. Petrópolis, RJ, 2024. 135 f. Dissertação (Mestrado em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2024. |
| url |
https://tede.lncc.br/handle/tede/404 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Laboratório Nacional de Computação Científica Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA) Brasil LNCC Programa de pós-graduação em Modelagem Computacional |
| publisher.none.fl_str_mv |
Laboratório Nacional de Computação Científica Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA) Brasil LNCC Programa de pós-graduação em Modelagem Computacional |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do LNCC instname:Laboratório Nacional de Computação Científica (LNCC) instacron:LNCC |
| instname_str |
Laboratório Nacional de Computação Científica (LNCC) |
| instacron_str |
LNCC |
| institution |
LNCC |
| reponame_str |
Biblioteca Digital de Teses e Dissertações do LNCC |
| collection |
Biblioteca Digital de Teses e Dissertações do LNCC |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC) |
| repository.mail.fl_str_mv |
library@lncc.br||library@lncc.br |
| _version_ |
1832738028527812608 |