Aplicação de Inteligência Artificial na Otimização e Análise de Incertezas em Materiais Compósitos Laminados
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Instituto de Pesquisas Energéticas e Nucleares (IPEN)
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.repositorio.mar.mil.br/handle/ripcmb/846359 |
Resumo: | O desenvolvimento de materiais com propriedades especiais para atender aos requisitos de projetos de alto desempenho tem impulsionado o uso de materiais compósitos devido às suas propriedades mecânicas superiores e baixo peso. Personalizar esses materiais para atender requisitos específicos do projeto apresenta desafios na busca pela combinação ideal de parâmetros. Além disso, a fabricação em larga escala dessas estruturas enfrenta variabilidades devido à imperfeições no processo. Para lidar com essas incertezas, há interesse em desenvolver métodos de otimização robustos que considerem as incertezas no projeto e nos parâmetros. Esse estudo desenvolveu uma metodologia e uma ferramenta computacional capazes de otimizar materiais compósitos laminados, levando em consi- deração as incertezas relacionadas às suas propriedades. O método permite reduzir o tempo e o custo em projetos de estruturas que utilizem esses materiais, além de fornecer informações sobre a resposta dessas estruturas diante de incertezas e demandas específicas da aplicação. A metodologia desenvolvida combina duas técnicas de inteligência artificial com um programa de análise estrutural. Essa abordagem busca identificar as estruturas mais adequadas entre uma ampla gama de possibilidades, considerando também a possível influência das incertezas nos parâmetros de projeto e na aplicação sobre as estruturas otimizadas. Algoritmo Genético e a Lógica Fuzzy são utilizados para otimizar e analisar as incertezas das estruturas, enquanto um Programa de Análise Estrutural (PAE), baseado em métodos de elementos finitos, fornece as respostas mecânicas das estruturas. Os resultados obtidos pelo PAE foram comparados com trabalhos já publicados e realizaram-se avaliações sobre os deslocamentos e tensões apresentados pelas estruturas quando submetidas a forças externas para casos lineares e não-linearidades, com grandes deslocamentos. Os resultados obtidos foram comparados com trabalhos publicados anteriormente, incluindo o método fechado de Navier baseado na Teoria da Deformação Cisalhante de Terceira Ordem (TSDT) e a Teoria de Deformação de Cisalhamento Hiperbólico Inverso (IHSDT), reconhecidos por sua precisão. Os deslocamentos calculados pelo programa apresentaram um desvio médio de apenas 1,22% em relação aos valores encontrados na literatura. Essa diferença tende a ser ainda menor em placas mais finas e com um maior número de camadas. Quanto às tensões, a diferença média foi inferior a 1%. Portanto, conclui-se que o modelo desenvolvido demonstra uma excelente precisão ao estimar os deslocamentos e as tensões nas estruturas, principalmente em placas finas compostas por um grande número de lâminas. A otimização utilizando Algoritmo Genético para encontrar as estruturas de menor peso e menor deslo- camento vertical de uma placa composta por oito lâminas simétricas apresentou um alto desempenho computacional, com uma probabilidade superior a 95% de encontrar todas as combinações ótimas em uma única execução. O algoritmo analisou um espaço de busca com 65.536 combinações possíveis para o laminado e foram identificadas 251 estruturas ótimas, formando o conjunto conhecido como Ótimo de Pareto. Os resultados obtidos demonstram que a metodologia desenvolvida é robusta e eficiente, especialmente em situações em que as informações sobre os materiais e sua aplicação são vagas ou imprecisas. Isso evidencia o potencial dessa abordagem para lidar com problemas complexos de projeto de estruturas compósitas. |
| id |
MB_138a737bb97657e59b4ad327a98ea655 |
|---|---|
| oai_identifier_str |
oai:www.repositorio.mar.mil.br:ripcmb/846359 |
| network_acronym_str |
MB |
| network_name_str |
Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) |
| repository_id_str |
|
| spelling |
Aplicação de Inteligência Artificial na Otimização e Análise de Incertezas em Materiais Compósitos Laminadoscompósitos laminadosotimizaçãoincertezasalgoritmos genéticoslógica Fuzzyoptimizationuncertaintiesgenetic algorithmsfuzzy logicEngenharia nuclearDiretoria-Geral do Material da Marinha (DGMM)O desenvolvimento de materiais com propriedades especiais para atender aos requisitos de projetos de alto desempenho tem impulsionado o uso de materiais compósitos devido às suas propriedades mecânicas superiores e baixo peso. Personalizar esses materiais para atender requisitos específicos do projeto apresenta desafios na busca pela combinação ideal de parâmetros. Além disso, a fabricação em larga escala dessas estruturas enfrenta variabilidades devido à imperfeições no processo. Para lidar com essas incertezas, há interesse em desenvolver métodos de otimização robustos que considerem as incertezas no projeto e nos parâmetros. Esse estudo desenvolveu uma metodologia e uma ferramenta computacional capazes de otimizar materiais compósitos laminados, levando em consi- deração as incertezas relacionadas às suas propriedades. O método permite reduzir o tempo e o custo em projetos de estruturas que utilizem esses materiais, além de fornecer informações sobre a resposta dessas estruturas diante de incertezas e demandas específicas da aplicação. A metodologia desenvolvida combina duas técnicas de inteligência artificial com um programa de análise estrutural. Essa abordagem busca identificar as estruturas mais adequadas entre uma ampla gama de possibilidades, considerando também a possível influência das incertezas nos parâmetros de projeto e na aplicação sobre as estruturas otimizadas. Algoritmo Genético e a Lógica Fuzzy são utilizados para otimizar e analisar as incertezas das estruturas, enquanto um Programa de Análise Estrutural (PAE), baseado em métodos de elementos finitos, fornece as respostas mecânicas das estruturas. Os resultados obtidos pelo PAE foram comparados com trabalhos já publicados e realizaram-se avaliações sobre os deslocamentos e tensões apresentados pelas estruturas quando submetidas a forças externas para casos lineares e não-linearidades, com grandes deslocamentos. Os resultados obtidos foram comparados com trabalhos publicados anteriormente, incluindo o método fechado de Navier baseado na Teoria da Deformação Cisalhante de Terceira Ordem (TSDT) e a Teoria de Deformação de Cisalhamento Hiperbólico Inverso (IHSDT), reconhecidos por sua precisão. Os deslocamentos calculados pelo programa apresentaram um desvio médio de apenas 1,22% em relação aos valores encontrados na literatura. Essa diferença tende a ser ainda menor em placas mais finas e com um maior número de camadas. Quanto às tensões, a diferença média foi inferior a 1%. Portanto, conclui-se que o modelo desenvolvido demonstra uma excelente precisão ao estimar os deslocamentos e as tensões nas estruturas, principalmente em placas finas compostas por um grande número de lâminas. A otimização utilizando Algoritmo Genético para encontrar as estruturas de menor peso e menor deslo- camento vertical de uma placa composta por oito lâminas simétricas apresentou um alto desempenho computacional, com uma probabilidade superior a 95% de encontrar todas as combinações ótimas em uma única execução. O algoritmo analisou um espaço de busca com 65.536 combinações possíveis para o laminado e foram identificadas 251 estruturas ótimas, formando o conjunto conhecido como Ótimo de Pareto. Os resultados obtidos demonstram que a metodologia desenvolvida é robusta e eficiente, especialmente em situações em que as informações sobre os materiais e sua aplicação são vagas ou imprecisas. Isso evidencia o potencial dessa abordagem para lidar com problemas complexos de projeto de estruturas compósitas.The demand for high-performance projects has led to the utilization of composite materials due to their exceptional mechanical properties and lightweight nature. However, customizing these materials to meet specific project requirements and dealing with manufacturing variability pose challenges in finding the optimal parameter combination. To address these uncertainties, there is a need to develop robust optimization methods that consider design and parameter uncertainties. In this study, a methodology and computational tool were developed to optimize laminated composite materials, considering uncertainties in their properties. This approach reduces design time and costs while providing insights into the response of structures to uncertainties and specific application demands. The methodology combines artificial intelligence techniques with a structural analysis program. Genetic Algorithm and Fuzzy Logic are employed to optimize and analyze uncertainties, while a Structural Analysis Program (PAE) based on finite element methods provides mechanical responses. The results obtained by the PAE were compared with previous studies, including Navier’s closed method based on the Third Order Shear Deformation Theory (TSDT) and the Inverse Hyperbolic Shear Deformation Theory (IHSDT), known for their accuracy. The calculated displacements showed an average deviation of only 1.22% compared to literature values, with even smaller deviations on thinner plates and with more layers. Similarly, the average difference in stresses was less than 1%. These findings demonstrate the excellent precision of the developed model in estimating displacements and stresses, especially in thin plates composed of multiple layers. Using the Genetic Algorithm for optimization, the search space consisting of 65,536 possible combinations for the laminate was explored to find structures with lower weight and vertical displacement. The algorithm demonstrated high computational performance, with a probability greater than 95% of identifying all optimal combinations in a single run. Out of the search space, 251 optimal structures were identified, forming the Pareto Optimum set. The results highlight the robustness and efficiency of the developed methodology, particularly in situations where information about materials and their application is uncertain or imprecise. This approach has significant potential in addressing complex design problems for composite structures.Instituto de Pesquisas Energéticas e Nucleares (IPEN)Mesquita, Roberto Navarro deKrusche, Felipe Biermann2023-09-13T13:15:32Z2023-09-13T13:15:32Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.repositorio.mar.mil.br/handle/ripcmb/846359info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB)instname:Marinha do Brasil (MB)instacron:MB2025-08-26T18:42:24Zoai:www.repositorio.mar.mil.br:ripcmb/846359Repositório InstitucionalPUBhttps://www.repositorio.mar.mil.br/oai/requestdphdm.repositorio@marinha.mil.bropendoar:2025-08-26T18:42:24Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) - Marinha do Brasil (MB)false |
| dc.title.none.fl_str_mv |
Aplicação de Inteligência Artificial na Otimização e Análise de Incertezas em Materiais Compósitos Laminados |
| title |
Aplicação de Inteligência Artificial na Otimização e Análise de Incertezas em Materiais Compósitos Laminados |
| spellingShingle |
Aplicação de Inteligência Artificial na Otimização e Análise de Incertezas em Materiais Compósitos Laminados Krusche, Felipe Biermann compósitos laminados otimização incertezas algoritmos genéticos lógica Fuzzy optimization uncertainties genetic algorithms fuzzy logic Engenharia nuclear Diretoria-Geral do Material da Marinha (DGMM) |
| title_short |
Aplicação de Inteligência Artificial na Otimização e Análise de Incertezas em Materiais Compósitos Laminados |
| title_full |
Aplicação de Inteligência Artificial na Otimização e Análise de Incertezas em Materiais Compósitos Laminados |
| title_fullStr |
Aplicação de Inteligência Artificial na Otimização e Análise de Incertezas em Materiais Compósitos Laminados |
| title_full_unstemmed |
Aplicação de Inteligência Artificial na Otimização e Análise de Incertezas em Materiais Compósitos Laminados |
| title_sort |
Aplicação de Inteligência Artificial na Otimização e Análise de Incertezas em Materiais Compósitos Laminados |
| author |
Krusche, Felipe Biermann |
| author_facet |
Krusche, Felipe Biermann |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Mesquita, Roberto Navarro de |
| dc.contributor.author.fl_str_mv |
Krusche, Felipe Biermann |
| dc.subject.por.fl_str_mv |
compósitos laminados otimização incertezas algoritmos genéticos lógica Fuzzy optimization uncertainties genetic algorithms fuzzy logic Engenharia nuclear Diretoria-Geral do Material da Marinha (DGMM) |
| topic |
compósitos laminados otimização incertezas algoritmos genéticos lógica Fuzzy optimization uncertainties genetic algorithms fuzzy logic Engenharia nuclear Diretoria-Geral do Material da Marinha (DGMM) |
| description |
O desenvolvimento de materiais com propriedades especiais para atender aos requisitos de projetos de alto desempenho tem impulsionado o uso de materiais compósitos devido às suas propriedades mecânicas superiores e baixo peso. Personalizar esses materiais para atender requisitos específicos do projeto apresenta desafios na busca pela combinação ideal de parâmetros. Além disso, a fabricação em larga escala dessas estruturas enfrenta variabilidades devido à imperfeições no processo. Para lidar com essas incertezas, há interesse em desenvolver métodos de otimização robustos que considerem as incertezas no projeto e nos parâmetros. Esse estudo desenvolveu uma metodologia e uma ferramenta computacional capazes de otimizar materiais compósitos laminados, levando em consi- deração as incertezas relacionadas às suas propriedades. O método permite reduzir o tempo e o custo em projetos de estruturas que utilizem esses materiais, além de fornecer informações sobre a resposta dessas estruturas diante de incertezas e demandas específicas da aplicação. A metodologia desenvolvida combina duas técnicas de inteligência artificial com um programa de análise estrutural. Essa abordagem busca identificar as estruturas mais adequadas entre uma ampla gama de possibilidades, considerando também a possível influência das incertezas nos parâmetros de projeto e na aplicação sobre as estruturas otimizadas. Algoritmo Genético e a Lógica Fuzzy são utilizados para otimizar e analisar as incertezas das estruturas, enquanto um Programa de Análise Estrutural (PAE), baseado em métodos de elementos finitos, fornece as respostas mecânicas das estruturas. Os resultados obtidos pelo PAE foram comparados com trabalhos já publicados e realizaram-se avaliações sobre os deslocamentos e tensões apresentados pelas estruturas quando submetidas a forças externas para casos lineares e não-linearidades, com grandes deslocamentos. Os resultados obtidos foram comparados com trabalhos publicados anteriormente, incluindo o método fechado de Navier baseado na Teoria da Deformação Cisalhante de Terceira Ordem (TSDT) e a Teoria de Deformação de Cisalhamento Hiperbólico Inverso (IHSDT), reconhecidos por sua precisão. Os deslocamentos calculados pelo programa apresentaram um desvio médio de apenas 1,22% em relação aos valores encontrados na literatura. Essa diferença tende a ser ainda menor em placas mais finas e com um maior número de camadas. Quanto às tensões, a diferença média foi inferior a 1%. Portanto, conclui-se que o modelo desenvolvido demonstra uma excelente precisão ao estimar os deslocamentos e as tensões nas estruturas, principalmente em placas finas compostas por um grande número de lâminas. A otimização utilizando Algoritmo Genético para encontrar as estruturas de menor peso e menor deslo- camento vertical de uma placa composta por oito lâminas simétricas apresentou um alto desempenho computacional, com uma probabilidade superior a 95% de encontrar todas as combinações ótimas em uma única execução. O algoritmo analisou um espaço de busca com 65.536 combinações possíveis para o laminado e foram identificadas 251 estruturas ótimas, formando o conjunto conhecido como Ótimo de Pareto. Os resultados obtidos demonstram que a metodologia desenvolvida é robusta e eficiente, especialmente em situações em que as informações sobre os materiais e sua aplicação são vagas ou imprecisas. Isso evidencia o potencial dessa abordagem para lidar com problemas complexos de projeto de estruturas compósitas. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09-13T13:15:32Z 2023-09-13T13:15:32Z 2023 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.repositorio.mar.mil.br/handle/ripcmb/846359 |
| url |
https://www.repositorio.mar.mil.br/handle/ripcmb/846359 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
| publisher.none.fl_str_mv |
Instituto de Pesquisas Energéticas e Nucleares (IPEN) |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) instname:Marinha do Brasil (MB) instacron:MB |
| instname_str |
Marinha do Brasil (MB) |
| instacron_str |
MB |
| institution |
MB |
| reponame_str |
Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) |
| collection |
Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) |
| repository.name.fl_str_mv |
Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) - Marinha do Brasil (MB) |
| repository.mail.fl_str_mv |
dphdm.repositorio@marinha.mil.br |
| _version_ |
1855762817032912896 |