Robust machine learning for computer vision in naval application

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Rangel, Gabriel Custódio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Naval Postgraduate School
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.repositorio.mar.mil.br/handle/ripcmb/846372
Resumo: This thesis proposes the development of a resilient machine learning algorithm that can classify naval images for surveillance, search, and detection operations in vast coastal areas. However, real-world datasets may be affected by label noise introduced either through random inaccuracies or deliberate adversarial attacks, both of which can negatively impact the accuracy of machine learning models. Our innovative approach employs Rockafellian Risk Minimization (RRM) to combat label noise contamination. Unlike existing methodologies reliant on extensively cleaned datasets, our two-step process involves adjusting neural network weights and manipulating data point nominal probabilities to isolate potential data corruption effectively. This technique reduces the dependency on meticulous data cleaning, thereby promoting more efficient and timeeffective data processing. To validate the efficacy and reliability of the proposed model, we apply RRM in several parameter configurations to naval environment datasets and assess its classification accuracy against traditional methods. By leveraging the proposed model, we aim to bolster the robustness of ship detection models, paving the way for a novel, reliable tool that could improve automated maritime surveillance systems.
id MB_759be570780ba375cd0318ae26fad6f0
oai_identifier_str oai:www.repositorio.mar.mil.br:ripcmb/846372
network_acronym_str MB
network_name_str Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB)
repository_id_str
spelling Robust machine learning for computer vision in naval applicationMachine learningComputer visionNeural networksEngenharia de produção aplicada à pesquisa operacional e gestão da inovaçãoDiretoria-Geral do Material da Marinha (DGMM)This thesis proposes the development of a resilient machine learning algorithm that can classify naval images for surveillance, search, and detection operations in vast coastal areas. However, real-world datasets may be affected by label noise introduced either through random inaccuracies or deliberate adversarial attacks, both of which can negatively impact the accuracy of machine learning models. Our innovative approach employs Rockafellian Risk Minimization (RRM) to combat label noise contamination. Unlike existing methodologies reliant on extensively cleaned datasets, our two-step process involves adjusting neural network weights and manipulating data point nominal probabilities to isolate potential data corruption effectively. This technique reduces the dependency on meticulous data cleaning, thereby promoting more efficient and timeeffective data processing. To validate the efficacy and reliability of the proposed model, we apply RRM in several parameter configurations to naval environment datasets and assess its classification accuracy against traditional methods. By leveraging the proposed model, we aim to bolster the robustness of ship detection models, paving the way for a novel, reliable tool that could improve automated maritime surveillance systems.Naval Postgraduate SchoolEckstrand, Eric C.Rangel, Gabriel Custódio2023-09-29T16:25:59Z2023-09-29T16:25:59Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.repositorio.mar.mil.br/handle/ripcmb/846372info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB)instname:Marinha do Brasil (MB)instacron:MB2025-08-26T18:42:25Zoai:www.repositorio.mar.mil.br:ripcmb/846372Repositório InstitucionalPUBhttps://www.repositorio.mar.mil.br/oai/requestdphdm.repositorio@marinha.mil.bropendoar:2025-08-26T18:42:25Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) - Marinha do Brasil (MB)false
dc.title.none.fl_str_mv Robust machine learning for computer vision in naval application
title Robust machine learning for computer vision in naval application
spellingShingle Robust machine learning for computer vision in naval application
Rangel, Gabriel Custódio
Machine learning
Computer vision
Neural networks
Engenharia de produção aplicada à pesquisa operacional e gestão da inovação
Diretoria-Geral do Material da Marinha (DGMM)
title_short Robust machine learning for computer vision in naval application
title_full Robust machine learning for computer vision in naval application
title_fullStr Robust machine learning for computer vision in naval application
title_full_unstemmed Robust machine learning for computer vision in naval application
title_sort Robust machine learning for computer vision in naval application
author Rangel, Gabriel Custódio
author_facet Rangel, Gabriel Custódio
author_role author
dc.contributor.none.fl_str_mv Eckstrand, Eric C.
dc.contributor.author.fl_str_mv Rangel, Gabriel Custódio
dc.subject.por.fl_str_mv Machine learning
Computer vision
Neural networks
Engenharia de produção aplicada à pesquisa operacional e gestão da inovação
Diretoria-Geral do Material da Marinha (DGMM)
topic Machine learning
Computer vision
Neural networks
Engenharia de produção aplicada à pesquisa operacional e gestão da inovação
Diretoria-Geral do Material da Marinha (DGMM)
description This thesis proposes the development of a resilient machine learning algorithm that can classify naval images for surveillance, search, and detection operations in vast coastal areas. However, real-world datasets may be affected by label noise introduced either through random inaccuracies or deliberate adversarial attacks, both of which can negatively impact the accuracy of machine learning models. Our innovative approach employs Rockafellian Risk Minimization (RRM) to combat label noise contamination. Unlike existing methodologies reliant on extensively cleaned datasets, our two-step process involves adjusting neural network weights and manipulating data point nominal probabilities to isolate potential data corruption effectively. This technique reduces the dependency on meticulous data cleaning, thereby promoting more efficient and timeeffective data processing. To validate the efficacy and reliability of the proposed model, we apply RRM in several parameter configurations to naval environment datasets and assess its classification accuracy against traditional methods. By leveraging the proposed model, we aim to bolster the robustness of ship detection models, paving the way for a novel, reliable tool that could improve automated maritime surveillance systems.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-29T16:25:59Z
2023-09-29T16:25:59Z
2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.repositorio.mar.mil.br/handle/ripcmb/846372
url https://www.repositorio.mar.mil.br/handle/ripcmb/846372
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Naval Postgraduate School
publisher.none.fl_str_mv Naval Postgraduate School
dc.source.none.fl_str_mv reponame:Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB)
instname:Marinha do Brasil (MB)
instacron:MB
instname_str Marinha do Brasil (MB)
instacron_str MB
institution MB
reponame_str Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB)
collection Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB)
repository.name.fl_str_mv Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) - Marinha do Brasil (MB)
repository.mail.fl_str_mv dphdm.repositorio@marinha.mil.br
_version_ 1855762817491140608