Robust machine learning for computer vision in naval application
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Naval Postgraduate School
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.repositorio.mar.mil.br/handle/ripcmb/846372 |
Resumo: | This thesis proposes the development of a resilient machine learning algorithm that can classify naval images for surveillance, search, and detection operations in vast coastal areas. However, real-world datasets may be affected by label noise introduced either through random inaccuracies or deliberate adversarial attacks, both of which can negatively impact the accuracy of machine learning models. Our innovative approach employs Rockafellian Risk Minimization (RRM) to combat label noise contamination. Unlike existing methodologies reliant on extensively cleaned datasets, our two-step process involves adjusting neural network weights and manipulating data point nominal probabilities to isolate potential data corruption effectively. This technique reduces the dependency on meticulous data cleaning, thereby promoting more efficient and timeeffective data processing. To validate the efficacy and reliability of the proposed model, we apply RRM in several parameter configurations to naval environment datasets and assess its classification accuracy against traditional methods. By leveraging the proposed model, we aim to bolster the robustness of ship detection models, paving the way for a novel, reliable tool that could improve automated maritime surveillance systems. |
| id |
MB_759be570780ba375cd0318ae26fad6f0 |
|---|---|
| oai_identifier_str |
oai:www.repositorio.mar.mil.br:ripcmb/846372 |
| network_acronym_str |
MB |
| network_name_str |
Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) |
| repository_id_str |
|
| spelling |
Robust machine learning for computer vision in naval applicationMachine learningComputer visionNeural networksEngenharia de produção aplicada à pesquisa operacional e gestão da inovaçãoDiretoria-Geral do Material da Marinha (DGMM)This thesis proposes the development of a resilient machine learning algorithm that can classify naval images for surveillance, search, and detection operations in vast coastal areas. However, real-world datasets may be affected by label noise introduced either through random inaccuracies or deliberate adversarial attacks, both of which can negatively impact the accuracy of machine learning models. Our innovative approach employs Rockafellian Risk Minimization (RRM) to combat label noise contamination. Unlike existing methodologies reliant on extensively cleaned datasets, our two-step process involves adjusting neural network weights and manipulating data point nominal probabilities to isolate potential data corruption effectively. This technique reduces the dependency on meticulous data cleaning, thereby promoting more efficient and timeeffective data processing. To validate the efficacy and reliability of the proposed model, we apply RRM in several parameter configurations to naval environment datasets and assess its classification accuracy against traditional methods. By leveraging the proposed model, we aim to bolster the robustness of ship detection models, paving the way for a novel, reliable tool that could improve automated maritime surveillance systems.Naval Postgraduate SchoolEckstrand, Eric C.Rangel, Gabriel Custódio2023-09-29T16:25:59Z2023-09-29T16:25:59Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.repositorio.mar.mil.br/handle/ripcmb/846372info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB)instname:Marinha do Brasil (MB)instacron:MB2025-08-26T18:42:25Zoai:www.repositorio.mar.mil.br:ripcmb/846372Repositório InstitucionalPUBhttps://www.repositorio.mar.mil.br/oai/requestdphdm.repositorio@marinha.mil.bropendoar:2025-08-26T18:42:25Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) - Marinha do Brasil (MB)false |
| dc.title.none.fl_str_mv |
Robust machine learning for computer vision in naval application |
| title |
Robust machine learning for computer vision in naval application |
| spellingShingle |
Robust machine learning for computer vision in naval application Rangel, Gabriel Custódio Machine learning Computer vision Neural networks Engenharia de produção aplicada à pesquisa operacional e gestão da inovação Diretoria-Geral do Material da Marinha (DGMM) |
| title_short |
Robust machine learning for computer vision in naval application |
| title_full |
Robust machine learning for computer vision in naval application |
| title_fullStr |
Robust machine learning for computer vision in naval application |
| title_full_unstemmed |
Robust machine learning for computer vision in naval application |
| title_sort |
Robust machine learning for computer vision in naval application |
| author |
Rangel, Gabriel Custódio |
| author_facet |
Rangel, Gabriel Custódio |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Eckstrand, Eric C. |
| dc.contributor.author.fl_str_mv |
Rangel, Gabriel Custódio |
| dc.subject.por.fl_str_mv |
Machine learning Computer vision Neural networks Engenharia de produção aplicada à pesquisa operacional e gestão da inovação Diretoria-Geral do Material da Marinha (DGMM) |
| topic |
Machine learning Computer vision Neural networks Engenharia de produção aplicada à pesquisa operacional e gestão da inovação Diretoria-Geral do Material da Marinha (DGMM) |
| description |
This thesis proposes the development of a resilient machine learning algorithm that can classify naval images for surveillance, search, and detection operations in vast coastal areas. However, real-world datasets may be affected by label noise introduced either through random inaccuracies or deliberate adversarial attacks, both of which can negatively impact the accuracy of machine learning models. Our innovative approach employs Rockafellian Risk Minimization (RRM) to combat label noise contamination. Unlike existing methodologies reliant on extensively cleaned datasets, our two-step process involves adjusting neural network weights and manipulating data point nominal probabilities to isolate potential data corruption effectively. This technique reduces the dependency on meticulous data cleaning, thereby promoting more efficient and timeeffective data processing. To validate the efficacy and reliability of the proposed model, we apply RRM in several parameter configurations to naval environment datasets and assess its classification accuracy against traditional methods. By leveraging the proposed model, we aim to bolster the robustness of ship detection models, paving the way for a novel, reliable tool that could improve automated maritime surveillance systems. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09-29T16:25:59Z 2023-09-29T16:25:59Z 2023 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.repositorio.mar.mil.br/handle/ripcmb/846372 |
| url |
https://www.repositorio.mar.mil.br/handle/ripcmb/846372 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Naval Postgraduate School |
| publisher.none.fl_str_mv |
Naval Postgraduate School |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) instname:Marinha do Brasil (MB) instacron:MB |
| instname_str |
Marinha do Brasil (MB) |
| instacron_str |
MB |
| institution |
MB |
| reponame_str |
Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) |
| collection |
Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) |
| repository.name.fl_str_mv |
Repositório Institucional da Produção Científica da Marinha do Brasil (RI-MB) - Marinha do Brasil (MB) |
| repository.mail.fl_str_mv |
dphdm.repositorio@marinha.mil.br |
| _version_ |
1855762817491140608 |