Exportação concluída — 

Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Arroyo, Fernando Bittencourt lattes
Orientador(a): Belan, Peterson Adriano lattes
Banca de defesa: Belan, Peterson Adriano lattes, Shibao, Fábio Ytoshi lattes, Terçariol, Adriana Aparecida de Lima lattes, Gaspar, Marcos Antônio lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Nove de Julho
Programa de Pós-Graduação: Programa de Pós-Graduação em Informática e Gestão do Conhecimento
Departamento: Informática
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://bibliotecatede.uninove.br/handle/tede/3614
Resumo: Over the past decade, several studies have described attempts to automate usability measurement using different data and techniques. However, so far, these proposals have not yielded significant conclusions. In a previous study, a methodology was proposed for measuring usability and user experience (UX) in the Laboratório Remoto de Microcontroladores at Uninove (LRM-U9), which obtained promising results, albeit at a high cost. LRM-U9 is a remote laboratory (RL) that enables distance learning experiments in the Internet of Things (IoT) field, allowing users to send commands to real equipment composed of a Raspberry Pi connected to two Arduinos, which, in turn, include components such as LEDs, sensors, a stepper motor, and a servo motor. The behavior of these components can be observed through a camera. The present study proposed an intelligent methodology for evaluating LRM-U9. To achieve this, software developers and students from Electrical Engineering-related disciplines were invited to conduct experiments in LRM-U9. Participants followed predefined scripts and, at the end, answered a questionnaire comprising items from the System Usability Scale (SUS), Usability Metrics for User Experience (UMUX), and descriptive questions. Additionally, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was developed, where questionnaire scores were used as target values, while usage and navigation data were employed to train the ANFIS model. In total, 39 samples with 49 attributes were collected, with 33 used for training and 6 for validation. The results were considered satisfactory: 78% of respondents reported that LRM-U9 contributed to their learning, and 63% highlighted its usefulness in teaching and learning. The SUS and UMUX questionnaires indicated usability and UX levels slightly above average, with scores of 72.5 and 76.6, respectively. The ANFIS model achieved a Root Mean Square Error (RMSE) of 4.6486, resulting in values very close to the actual ones. The methodology demonstrated potential for application in other contexts and target audiences.
id NOVE_6ee7d1178af8db8e15e0adda94ab7ff5
oai_identifier_str oai:localhost:tede/3614
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Belan, Peterson Adrianohttp://lattes.cnpq.br/8197537484347198Belan, Peterson Adrianohttp://lattes.cnpq.br/8197537484347198Shibao, Fábio Ytoshihttp://lattes.cnpq.br/5193387185016793Terçariol, Adriana Aparecida de Limahttp://lattes.cnpq.br/2550466423628629Gaspar, Marcos Antôniohttp://lattes.cnpq.br/3809285940688486http://lattes.cnpq.br/8552297147696225Arroyo, Fernando Bittencourt2025-03-20T20:37:21Z2024-12-20Arroyo, Fernando Bittencourt. Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy. 2024. 203 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/3614Over the past decade, several studies have described attempts to automate usability measurement using different data and techniques. However, so far, these proposals have not yielded significant conclusions. In a previous study, a methodology was proposed for measuring usability and user experience (UX) in the Laboratório Remoto de Microcontroladores at Uninove (LRM-U9), which obtained promising results, albeit at a high cost. LRM-U9 is a remote laboratory (RL) that enables distance learning experiments in the Internet of Things (IoT) field, allowing users to send commands to real equipment composed of a Raspberry Pi connected to two Arduinos, which, in turn, include components such as LEDs, sensors, a stepper motor, and a servo motor. The behavior of these components can be observed through a camera. The present study proposed an intelligent methodology for evaluating LRM-U9. To achieve this, software developers and students from Electrical Engineering-related disciplines were invited to conduct experiments in LRM-U9. Participants followed predefined scripts and, at the end, answered a questionnaire comprising items from the System Usability Scale (SUS), Usability Metrics for User Experience (UMUX), and descriptive questions. Additionally, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was developed, where questionnaire scores were used as target values, while usage and navigation data were employed to train the ANFIS model. In total, 39 samples with 49 attributes were collected, with 33 used for training and 6 for validation. The results were considered satisfactory: 78% of respondents reported that LRM-U9 contributed to their learning, and 63% highlighted its usefulness in teaching and learning. The SUS and UMUX questionnaires indicated usability and UX levels slightly above average, with scores of 72.5 and 76.6, respectively. The ANFIS model achieved a Root Mean Square Error (RMSE) of 4.6486, resulting in values very close to the actual ones. The methodology demonstrated potential for application in other contexts and target audiences.Ao longo da última década, diversos estudos descreveram tentativas de mensuração automatizada da usabilidade com diferentes dados e técnicas. No entanto, até o momento, as propostas não apresentaram conclusões relevantes. Em estudo anterior, foi proposta uma metodologia para mensuração da usabilidade e da experiência do usuário (UX) no Laboratório Remoto de Microcontroladores da Uninove (LRM-U9), que obteve resultados promissores, porém de forma onerosa. O LRM-U9 é um laboratório remoto (LR) que permite a realização de experimentos para o aprendizado à distância em Internet das Coisas (IoT), viabilizando o envio de comandos para um equipamento real composto por um Raspberry Pi conectado a dois Arduinos, que, por sua vez, possuem componentes como LEDs, sensores, motor de passo e servo motor. O comportamento desses componentes pode ser observado por meio de uma câmera. O presente estudo propôs uma metodologia inteligente para avaliação do LRM-U9, para isso foram convidados desenvolvedores de software e alunos de disciplinas relacionadas à Engenharia Elétrica para realizarem experimentos no LRM-U9. Os participantes seguiram os roteiros preestabelecidos e, ao final, responderam a um questionário que contemplava questões do System Usability Scale (SUS), do Usability Metrics for User Experience (UMUX) e perguntas descritivas. Além disso, foi desenvolvido um Sistema Adaptativo Neuro-Fuzzy (ANFIS), no qual as pontuações obtidas pelos questionários foram utilizadas como valores-alvo, enquanto os dados de uso e navegação serviram para o treinamento do modelo ANFIS. No total, foram coletadas 39 amostras com 49 atributos, sendo 33 utilizadas para treinamento e 6 para validação. Os resultados obtidos foram considerados satisfatórios: 78% dos respondentes relataram que o LRM-U9 contribuiu para o aprendizado, e 63% destacaram sua utilidade como no ensino/aprendizagem. Os questionários SUS e UMUX indicaram usabilidade e UX pouco acima da média, com pontuações de 72,5 e 76,6, respectivamente. O modelo ANFIS apresentou RMSE (Root Mean Square Error) de 4,6486, resultando em valores muito próximos aos reais. A metodologia demonstrou potencial para aplicação em outros contextos e públicos.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2025-03-20T20:37:21Z No. of bitstreams: 1 Fernando Bittencourt Arroyo.pdf: 6913759 bytes, checksum: 47b384d698e835c20c9e517c48c48e72 (MD5)Made available in DSpace on 2025-03-20T20:37:21Z (GMT). No. of bitstreams: 1 Fernando Bittencourt Arroyo.pdf: 6913759 bytes, checksum: 47b384d698e835c20c9e517c48c48e72 (MD5) Previous issue date: 2024-12-20application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticalaboratório remotoavaliação de usabilidadeavaliação de experiência do usuáriofuzzyremote labinternet of thingsusability evaluationuser experience evaluationfuzzyCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOAvaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzySmart evaluation usability in a remote lab using neuro-fuzzyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALFernando Bittencourt Arroyo.pdfFernando Bittencourt Arroyo.pdfapplication/pdf6913759http://localhost:8080/tede/bitstream/tede/3614/2/Fernando+Bittencourt+Arroyo.pdf47b384d698e835c20c9e517c48c48e72MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/3614/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/36142025-03-20 17:37:21.696oai:localhost:tede/3614Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2025-03-20T20:37:21Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy
dc.title.alternative.eng.fl_str_mv Smart evaluation usability in a remote lab using neuro-fuzzy
title Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy
spellingShingle Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy
Arroyo, Fernando Bittencourt
laboratório remoto
avaliação de usabilidade
avaliação de experiência do usuário
fuzzy
remote lab
internet of things
usability evaluation
user experience evaluation
fuzzy
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy
title_full Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy
title_fullStr Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy
title_full_unstemmed Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy
title_sort Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy
author Arroyo, Fernando Bittencourt
author_facet Arroyo, Fernando Bittencourt
author_role author
dc.contributor.advisor1.fl_str_mv Belan, Peterson Adriano
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8197537484347198
dc.contributor.referee1.fl_str_mv Belan, Peterson Adriano
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8197537484347198
dc.contributor.referee2.fl_str_mv Shibao, Fábio Ytoshi
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5193387185016793
dc.contributor.referee3.fl_str_mv Terçariol, Adriana Aparecida de Lima
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/2550466423628629
dc.contributor.referee4.fl_str_mv Gaspar, Marcos Antônio
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/3809285940688486
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8552297147696225
dc.contributor.author.fl_str_mv Arroyo, Fernando Bittencourt
contributor_str_mv Belan, Peterson Adriano
Belan, Peterson Adriano
Shibao, Fábio Ytoshi
Terçariol, Adriana Aparecida de Lima
Gaspar, Marcos Antônio
dc.subject.por.fl_str_mv laboratório remoto
avaliação de usabilidade
avaliação de experiência do usuário
fuzzy
topic laboratório remoto
avaliação de usabilidade
avaliação de experiência do usuário
fuzzy
remote lab
internet of things
usability evaluation
user experience evaluation
fuzzy
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv remote lab
internet of things
usability evaluation
user experience evaluation
fuzzy
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description Over the past decade, several studies have described attempts to automate usability measurement using different data and techniques. However, so far, these proposals have not yielded significant conclusions. In a previous study, a methodology was proposed for measuring usability and user experience (UX) in the Laboratório Remoto de Microcontroladores at Uninove (LRM-U9), which obtained promising results, albeit at a high cost. LRM-U9 is a remote laboratory (RL) that enables distance learning experiments in the Internet of Things (IoT) field, allowing users to send commands to real equipment composed of a Raspberry Pi connected to two Arduinos, which, in turn, include components such as LEDs, sensors, a stepper motor, and a servo motor. The behavior of these components can be observed through a camera. The present study proposed an intelligent methodology for evaluating LRM-U9. To achieve this, software developers and students from Electrical Engineering-related disciplines were invited to conduct experiments in LRM-U9. Participants followed predefined scripts and, at the end, answered a questionnaire comprising items from the System Usability Scale (SUS), Usability Metrics for User Experience (UMUX), and descriptive questions. Additionally, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was developed, where questionnaire scores were used as target values, while usage and navigation data were employed to train the ANFIS model. In total, 39 samples with 49 attributes were collected, with 33 used for training and 6 for validation. The results were considered satisfactory: 78% of respondents reported that LRM-U9 contributed to their learning, and 63% highlighted its usefulness in teaching and learning. The SUS and UMUX questionnaires indicated usability and UX levels slightly above average, with scores of 72.5 and 76.6, respectively. The ANFIS model achieved a Root Mean Square Error (RMSE) of 4.6486, resulting in values very close to the actual ones. The methodology demonstrated potential for application in other contexts and target audiences.
publishDate 2024
dc.date.issued.fl_str_mv 2024-12-20
dc.date.accessioned.fl_str_mv 2025-03-20T20:37:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Arroyo, Fernando Bittencourt. Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy. 2024. 203 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/3614
identifier_str_mv Arroyo, Fernando Bittencourt. Avaliação inteligente de usabilidade em um laboratório remoto utilizando neuro-fuzzy. 2024. 203 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/3614
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática e Gestão do Conhecimento
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Informática
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/3614/2/Fernando+Bittencourt+Arroyo.pdf
http://localhost:8080/tede/bitstream/tede/3614/1/license.txt
bitstream.checksum.fl_str_mv 47b384d698e835c20c9e517c48c48e72
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1845552677714395136