Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Carneiro, Maria Sheila lattes
Orientador(a): Gaspar, Marcos Antônio lattes
Banca de defesa: Gaspar, Marcos Antônio lattes, Sassi, Renato José lattes, Ohashi, Fabio Kazuo lattes, Dias, Cleber Gustavo lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Nove de Julho
Programa de Pós-Graduação: Programa de Pós-Graduação em Informática e Gestão do Conhecimento
Departamento: Informática
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://bibliotecatede.uninove.br/handle/tede/3241
Resumo: Customers exchange information, opinions and feelings daily on various topics linked to the products and services offered by companies. However, the data generated in these testimonials need to be analyzed to extract useful knowledge for the company to better understand the customer, in order to provide better service. Artificial Intelligence (AI) has methods and techniques applicable to the analysis of feelings expressed by customers in free texts with low structuring. Thus, the application of AI to discover knowledge in databases can help in understanding the feelings expressed by the client. The objective of this research is to apply techniques of convolutional neural networks for the analysis and classification of sentiments in customer comments aiming at discovering customer knowledge in a retail company. In addition, we also sought to compare the results of the experiments with the results of the detractor indicators of the NPS (Net Promoter Score) of a retailer. Therefore, this exploratory and experimental research was made possible through the execution of experiments based on the stages of the Knowledge Discovery Databases (KDD). Convolutional neural network techniques were applied for customer knowledge discovery. The main results of the research indicate that many customer comments are related to certain aspects of the company's products and services, where the following stand out: card, limit, payment, increase and difficulty in attending to the channels made available by the company. As for the crossing of attributes related to the client's profile with the NPS results, it was possible to identify the comments and main arguments segregated by gender, age group, income level and place of residence of clients with NPS detractors. As a conclusion of the research, it is possible to state that the developed solution can provide knowledge discovery of the client from texts elaborated by them. In addition, it is also asserted that the developed solution can assist in customer management in retail companies with a large volume of customer data.
id NOVE_76f36a01689641c2a77512ddc7ddefdf
oai_identifier_str oai:localhost:tede/3241
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Gaspar, Marcos Antôniohttp://lattes.cnpq.br/3809285940688486Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Gaspar, Marcos Antôniohttp://lattes.cnpq.br/3809285940688486Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Ohashi, Fabio Kazuohttp://lattes.cnpq.br/3337188621913076Dias, Cleber Gustavohttp://lattes.cnpq.br/2147386441758156http://lattes.cnpq.br/7607320645673725Carneiro, Maria Sheila2023-12-04T15:23:21Z2023-04-19Carneiro, Maria Sheila. Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente. 2023. 137 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/3241Customers exchange information, opinions and feelings daily on various topics linked to the products and services offered by companies. However, the data generated in these testimonials need to be analyzed to extract useful knowledge for the company to better understand the customer, in order to provide better service. Artificial Intelligence (AI) has methods and techniques applicable to the analysis of feelings expressed by customers in free texts with low structuring. Thus, the application of AI to discover knowledge in databases can help in understanding the feelings expressed by the client. The objective of this research is to apply techniques of convolutional neural networks for the analysis and classification of sentiments in customer comments aiming at discovering customer knowledge in a retail company. In addition, we also sought to compare the results of the experiments with the results of the detractor indicators of the NPS (Net Promoter Score) of a retailer. Therefore, this exploratory and experimental research was made possible through the execution of experiments based on the stages of the Knowledge Discovery Databases (KDD). Convolutional neural network techniques were applied for customer knowledge discovery. The main results of the research indicate that many customer comments are related to certain aspects of the company's products and services, where the following stand out: card, limit, payment, increase and difficulty in attending to the channels made available by the company. As for the crossing of attributes related to the client's profile with the NPS results, it was possible to identify the comments and main arguments segregated by gender, age group, income level and place of residence of clients with NPS detractors. As a conclusion of the research, it is possible to state that the developed solution can provide knowledge discovery of the client from texts elaborated by them. In addition, it is also asserted that the developed solution can assist in customer management in retail companies with a large volume of customer data.Os clientes trocam informações, opiniões e sentimentos diariamente sobre diversos temas atrelados aos produtos e serviços ofertados pelas empresas. Porém, os dados gerados nesses depoimentos precisam ser analisados visando assim a extração de conhecimento útil à empresa para a melhor compreensão do cliente, de modo a proporcionar um melhor atendimento. A Inteligência Artificial (IA) dispõe de métodos e técnicas aplicáveis à análise de sentimentos expressados por clientes em textos livres com baixa estruturação. Assim, a aplicação da IA para descoberta de conhecimentos em bases de dados pode auxiliar na compreensão dos sentimentos expressados pelo cliente. O objetivo desta pesquisa é aplicar técnicas de redes neurais convolucionais para a análise e classificação de sentimentos em comentários de clientes visando a descoberta de conhecimento do cliente em empresa varejista. Em adição, buscou-se ainda comparar os resultados dos experimentos com os resultados dos indicadores detratores do NPS (Net Promoter Score) de empresa varejista. Para tanto, esta pesquisa exploratória e experimental foi viabilizada por meio da execução de experimentos embasados nas etapas do processo de descoberta de conhecimentos em bases de dados (KDD). Técnicas de redes neurais convolucionais foram aplicadas para a descoberta de conhecimento do cliente. Os principais resultados da pesquisa indicam que muitos comentários de clientes estão relacionais a determinados aspectos dos produtos e serviços da empresa, dentre os quais destacam-se: cartão, limite, pagamento, aumento e dificuldade de atendimento nos canais disponibilizados pela empresa. Quanto ao cruzamento dos atributos relativos ao perfil do cliente com os resultados de NPS foi possível identificar os comentários e principais argumentos segregados por gênero, faixa etária, nível de renda e localidade de domicílio de clientes com NPS detratores. Como conclusão da pesquisa é possível afirmar que a solução desenvolvida é capaz de proporcionar descoberta de conhecimento do cliente a partir de textos elaborados pelos mesmos. Em complemento, assevera-se ainda que a solução desenvolvida é capaz de auxiliar na gestão do cliente em empresas varejistas com grande volume de dados de clientes.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2023-12-04T15:23:21Z No. of bitstreams: 1 Maria Sheila Carneiro.pdf: 5997494 bytes, checksum: 9d257020e928d7e3e0d4d1650a16c408 (MD5)Made available in DSpace on 2023-12-04T15:23:21Z (GMT). No. of bitstreams: 1 Maria Sheila Carneiro.pdf: 5997494 bytes, checksum: 9d257020e928d7e3e0d4d1650a16c408 (MD5) Previous issue date: 2023-04-19application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticainteligência artificialanálise de sentimentosredes neurais convolucionaisdescoberta de conhecimento em bases de dadosartificial intelligencesentiment analysisconvolutional neural networksdiscovery of knowledge in databasesCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOAplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o clienteApplication of convolutional neural networks for sentiment analysis for knowledge discovery about the customerinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALMaria Sheila Carneiro.pdfMaria Sheila Carneiro.pdfapplication/pdf5997494http://localhost:8080/tede/bitstream/tede/3241/2/Maria+Sheila+Carneiro.pdf9d257020e928d7e3e0d4d1650a16c408MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/3241/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/32412023-12-04 12:23:21.116oai:localhost:tede/3241Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2023-12-04T15:23:21Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente
dc.title.alternative.eng.fl_str_mv Application of convolutional neural networks for sentiment analysis for knowledge discovery about the customer
title Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente
spellingShingle Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente
Carneiro, Maria Sheila
inteligência artificial
análise de sentimentos
redes neurais convolucionais
descoberta de conhecimento em bases de dados
artificial intelligence
sentiment analysis
convolutional neural networks
discovery of knowledge in databases
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente
title_full Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente
title_fullStr Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente
title_full_unstemmed Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente
title_sort Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente
author Carneiro, Maria Sheila
author_facet Carneiro, Maria Sheila
author_role author
dc.contributor.advisor1.fl_str_mv Gaspar, Marcos Antônio
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3809285940688486
dc.contributor.advisor-co1.fl_str_mv Sassi, Renato José
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.referee1.fl_str_mv Gaspar, Marcos Antônio
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3809285940688486
dc.contributor.referee2.fl_str_mv Sassi, Renato José
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.referee3.fl_str_mv Ohashi, Fabio Kazuo
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3337188621913076
dc.contributor.referee4.fl_str_mv Dias, Cleber Gustavo
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/2147386441758156
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7607320645673725
dc.contributor.author.fl_str_mv Carneiro, Maria Sheila
contributor_str_mv Gaspar, Marcos Antônio
Sassi, Renato José
Gaspar, Marcos Antônio
Sassi, Renato José
Ohashi, Fabio Kazuo
Dias, Cleber Gustavo
dc.subject.por.fl_str_mv inteligência artificial
análise de sentimentos
redes neurais convolucionais
descoberta de conhecimento em bases de dados
topic inteligência artificial
análise de sentimentos
redes neurais convolucionais
descoberta de conhecimento em bases de dados
artificial intelligence
sentiment analysis
convolutional neural networks
discovery of knowledge in databases
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv artificial intelligence
sentiment analysis
convolutional neural networks
discovery of knowledge in databases
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description Customers exchange information, opinions and feelings daily on various topics linked to the products and services offered by companies. However, the data generated in these testimonials need to be analyzed to extract useful knowledge for the company to better understand the customer, in order to provide better service. Artificial Intelligence (AI) has methods and techniques applicable to the analysis of feelings expressed by customers in free texts with low structuring. Thus, the application of AI to discover knowledge in databases can help in understanding the feelings expressed by the client. The objective of this research is to apply techniques of convolutional neural networks for the analysis and classification of sentiments in customer comments aiming at discovering customer knowledge in a retail company. In addition, we also sought to compare the results of the experiments with the results of the detractor indicators of the NPS (Net Promoter Score) of a retailer. Therefore, this exploratory and experimental research was made possible through the execution of experiments based on the stages of the Knowledge Discovery Databases (KDD). Convolutional neural network techniques were applied for customer knowledge discovery. The main results of the research indicate that many customer comments are related to certain aspects of the company's products and services, where the following stand out: card, limit, payment, increase and difficulty in attending to the channels made available by the company. As for the crossing of attributes related to the client's profile with the NPS results, it was possible to identify the comments and main arguments segregated by gender, age group, income level and place of residence of clients with NPS detractors. As a conclusion of the research, it is possible to state that the developed solution can provide knowledge discovery of the client from texts elaborated by them. In addition, it is also asserted that the developed solution can assist in customer management in retail companies with a large volume of customer data.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-12-04T15:23:21Z
dc.date.issued.fl_str_mv 2023-04-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Carneiro, Maria Sheila. Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente. 2023. 137 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/3241
identifier_str_mv Carneiro, Maria Sheila. Aplicação de redes neurais convolucionais para análise de sentimentos para a descoberta de conhecimento sobre o cliente. 2023. 137 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/3241
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática e Gestão do Conhecimento
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Informática
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/3241/2/Maria+Sheila+Carneiro.pdf
http://localhost:8080/tede/bitstream/tede/3241/1/license.txt
bitstream.checksum.fl_str_mv 9d257020e928d7e3e0d4d1650a16c408
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1845552672651870208