Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Lourenço, Wilson Da Silva lattes
Orientador(a): Araújo, Sidnei Alves de lattes
Banca de defesa: Gaspar, Marcos Antonio, Costa, Ivanir, Gonçalves, Rodrigo Franco
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Nove de Julho
Programa de Pós-Graduação: Programa de Pós-Graduação de Mestrado e Doutorado em Engenharia de Produção
Departamento: Engenharia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://bibliotecatede.uninove.br/handle/tede/1122
Resumo: The network optimization problems (NOP) are common to several areas such as engineering, transport and telecommunications, and have been objects of intense research and studies. Among the classical NOP are the problems of Shortest Path (SPP), Max Flow (MFP) and Traveling Salesman (TSP), which are usually studied in undergraduate and graduate courses such as Industrial Engineering, Computer Science, Information Systems and Logistics, with the use of resources such as chalk and blackboard that hinder the teacher's work, in the sense of showing the functioning of algorithms that solve these problems while maintaining students' motivation for learning. In this context, it is proposed in this research, a computational tool, characterized as a Learning Object (OA) and called TASNOP - Teaching Algorithms for Solving Network Optimization Problems, whose purpose is to contribute to students' understanding about concepts from NOP and, mainly, the functioning of algorithms A*, Greedy Search and Dijkstra used for resolution of SPP, Ford-Fulkerson employed in the resolution of MFP and the Nearest Neighbor to solve the TSP. It is important to highlight that the proposed OA can be accessed through web and also employed in distance learning environments (DLE). Experiments conducted in 2014 with 129 students of Computer Science, from which 51 performed an exercise using the TASNOP and 78 without this tool, confirm that students who used the TASNOP performed better in solving the proposed exercise, corroborating the idea that the OA helped to improve their understanding about the algorithms discussed in this research. In addition, the 51 students who employed the TASNOP answered a questionnaire about it use and, the answers indicated that the TASNOP shows a potential to be used as a learning support tool.
id NOVE_bb67c0c60d9f3e1eaa5b306ce82c5a7d
oai_identifier_str oai:localhost:tede/1122
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Araújo, Sidnei Alves dehttp://lattes.cnpq.br/2542529753132844Gaspar, Marcos AntonioCosta, IvanirGonçalves, Rodrigo Francohttp://lattes.cnpq.br/8545261912710157Lourenço, Wilson Da Silva2015-07-17T15:18:49Z2015-02-26Lourenço, Wilson Da Silva. Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes. 2015. 68 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo .http://bibliotecatede.uninove.br/handle/tede/1122The network optimization problems (NOP) are common to several areas such as engineering, transport and telecommunications, and have been objects of intense research and studies. Among the classical NOP are the problems of Shortest Path (SPP), Max Flow (MFP) and Traveling Salesman (TSP), which are usually studied in undergraduate and graduate courses such as Industrial Engineering, Computer Science, Information Systems and Logistics, with the use of resources such as chalk and blackboard that hinder the teacher's work, in the sense of showing the functioning of algorithms that solve these problems while maintaining students' motivation for learning. In this context, it is proposed in this research, a computational tool, characterized as a Learning Object (OA) and called TASNOP - Teaching Algorithms for Solving Network Optimization Problems, whose purpose is to contribute to students' understanding about concepts from NOP and, mainly, the functioning of algorithms A*, Greedy Search and Dijkstra used for resolution of SPP, Ford-Fulkerson employed in the resolution of MFP and the Nearest Neighbor to solve the TSP. It is important to highlight that the proposed OA can be accessed through web and also employed in distance learning environments (DLE). Experiments conducted in 2014 with 129 students of Computer Science, from which 51 performed an exercise using the TASNOP and 78 without this tool, confirm that students who used the TASNOP performed better in solving the proposed exercise, corroborating the idea that the OA helped to improve their understanding about the algorithms discussed in this research. In addition, the 51 students who employed the TASNOP answered a questionnaire about it use and, the answers indicated that the TASNOP shows a potential to be used as a learning support tool.Os problemas de otimização em redes (POR) são comuns a diversas áreas como engenharia, transportes e telecomunicações, e têm sido objetos de intensas pesquisas e estudos. Entre os POR clássicos estão os problemas de Caminho Mínimo (PCM), Fluxo Máximo (PFM) e Caixeiro Viajante (PCV), os quais normalmente são estudados em cursos de graduação e pós-graduação tais como Engenharia de Produção, Ciência da Computação, Sistemas de Informação e Logística, com a utilização de recursos como giz e lousa, o que dificulta o trabalho do professor, no sentido de mostrar o funcionamento dos algoritmos que solucionam esses problemas, mantendo a motivação dos alunos para a aprendizagem. Neste contexto, propõe-se nesta pesquisa, uma ferramenta computacional, caracterizada como um Objeto de Aprendizagem (OA) denominado TASNOP - Teaching Algorithms for Solving Network Optimization Problems, cuja finalidade é contribuir para compreensão dos alunos sobre conceitos de POR e, principalmente, sobre o funcionamento dos algoritmos A*, Busca Gulosa, e Dijkstra, usados para resolução do PCM, Ford-Fulkerson empregado na resolução de PFM e o algoritmo Vizinho mais Próximo para resolução do PCV. É importante ressaltar que o OA proposto pode ser acessado via web e, inclusive, ser acoplado em ambientes de ensino a distância (EaD). Experimentos realizados no ano de 2014 envolvendo 129 alunos do curso de Ciência da Computação, dos quais 51 resolveram um exercício com o uso do TASNOP e 78 sem o seu uso, permitiram verificar que os alunos que utilizaram o TASNOP obtiveram melhor desempenho na resolução do exercício proposto, corroborando a ideia de que o OA contribuiu para melhorar suas compreensões acerca dos algoritmos abordados nesta pesquisa. Em adição, os 51 alunos que usaram o TASNOP responderam a um questionário sobre o seu uso e, com base nessas respostas, ficou evidente o potencial do TASNOP como uma ferramenta de apoio ao ensino.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2015-07-17T15:18:49Z No. of bitstreams: 1 Wilson da Silva Lourenco.pdf: 1321079 bytes, checksum: ea090b0df77d0c04ef1dde30e7b41558 (MD5)Made available in DSpace on 2015-07-17T15:18:49Z (GMT). No. of bitstreams: 1 Wilson da Silva Lourenco.pdf: 1321079 bytes, checksum: ea090b0df77d0c04ef1dde30e7b41558 (MD5) Previous issue date: 2015-02-26application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação de Mestrado e Doutorado em Engenharia de ProduçãoUNINOVEBrasilEngenhariaproblemas de otimização em redescaminho mínimocaixeiro viajantefluxo máximoobjeto de aprendizagemnetwork optimization problemsshortest pathmax flowtraveling salesmanlearning objectENGENHARIAS::ENGENHARIA DE PRODUCAOObjeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis2551182063231974631600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALWilson da Silva Lourenco.pdfWilson da Silva Lourenco.pdfapplication/pdf1321079http://localhost:8080/tede/bitstream/tede/1122/2/Wilson+da+Silva+Lourenco.pdfea090b0df77d0c04ef1dde30e7b41558MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/tede/1122/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51tede/11222025-10-17 17:02:38.404oai:localhost:tede/1122Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2025-10-17T20:02:38Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes
title Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes
spellingShingle Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes
Lourenço, Wilson Da Silva
problemas de otimização em redes
caminho mínimo
caixeiro viajante
fluxo máximo
objeto de aprendizagem
network optimization problems
shortest path
max flow
traveling salesman
learning object
ENGENHARIAS::ENGENHARIA DE PRODUCAO
title_short Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes
title_full Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes
title_fullStr Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes
title_full_unstemmed Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes
title_sort Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes
author Lourenço, Wilson Da Silva
author_facet Lourenço, Wilson Da Silva
author_role author
dc.contributor.advisor1.fl_str_mv Araújo, Sidnei Alves de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2542529753132844
dc.contributor.referee1.fl_str_mv Gaspar, Marcos Antonio
dc.contributor.referee2.fl_str_mv Costa, Ivanir
dc.contributor.referee3.fl_str_mv Gonçalves, Rodrigo Franco
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8545261912710157
dc.contributor.author.fl_str_mv Lourenço, Wilson Da Silva
contributor_str_mv Araújo, Sidnei Alves de
Gaspar, Marcos Antonio
Costa, Ivanir
Gonçalves, Rodrigo Franco
dc.subject.por.fl_str_mv problemas de otimização em redes
caminho mínimo
caixeiro viajante
fluxo máximo
objeto de aprendizagem
topic problemas de otimização em redes
caminho mínimo
caixeiro viajante
fluxo máximo
objeto de aprendizagem
network optimization problems
shortest path
max flow
traveling salesman
learning object
ENGENHARIAS::ENGENHARIA DE PRODUCAO
dc.subject.eng.fl_str_mv network optimization problems
shortest path
max flow
traveling salesman
learning object
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE PRODUCAO
description The network optimization problems (NOP) are common to several areas such as engineering, transport and telecommunications, and have been objects of intense research and studies. Among the classical NOP are the problems of Shortest Path (SPP), Max Flow (MFP) and Traveling Salesman (TSP), which are usually studied in undergraduate and graduate courses such as Industrial Engineering, Computer Science, Information Systems and Logistics, with the use of resources such as chalk and blackboard that hinder the teacher's work, in the sense of showing the functioning of algorithms that solve these problems while maintaining students' motivation for learning. In this context, it is proposed in this research, a computational tool, characterized as a Learning Object (OA) and called TASNOP - Teaching Algorithms for Solving Network Optimization Problems, whose purpose is to contribute to students' understanding about concepts from NOP and, mainly, the functioning of algorithms A*, Greedy Search and Dijkstra used for resolution of SPP, Ford-Fulkerson employed in the resolution of MFP and the Nearest Neighbor to solve the TSP. It is important to highlight that the proposed OA can be accessed through web and also employed in distance learning environments (DLE). Experiments conducted in 2014 with 129 students of Computer Science, from which 51 performed an exercise using the TASNOP and 78 without this tool, confirm that students who used the TASNOP performed better in solving the proposed exercise, corroborating the idea that the OA helped to improve their understanding about the algorithms discussed in this research. In addition, the 51 students who employed the TASNOP answered a questionnaire about it use and, the answers indicated that the TASNOP shows a potential to be used as a learning support tool.
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-07-17T15:18:49Z
dc.date.issued.fl_str_mv 2015-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Lourenço, Wilson Da Silva. Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes. 2015. 68 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo .
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/1122
identifier_str_mv Lourenço, Wilson Da Silva. Objeto de aprendizagem para o ensino de algoritmos solucionadores de problemas de otimização em redes. 2015. 68 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo .
url http://bibliotecatede.uninove.br/handle/tede/1122
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 2551182063231974631
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação de Mestrado e Doutorado em Engenharia de Produção
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Engenharia
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/1122/2/Wilson+da+Silva+Lourenco.pdf
http://localhost:8080/tede/bitstream/tede/1122/1/license.txt
bitstream.checksum.fl_str_mv ea090b0df77d0c04ef1dde30e7b41558
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1857652247560716288