Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Martins, Dayvid Wesley Pereira lattes
Orientador(a): Dantas, Maria José Pereira lattes
Banca de defesa: Machado, Ricardo Luiz lattes, Carmo, Iran Martins do lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica de Goiás
Programa de Pós-Graduação: Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas
Departamento: Escola de Engenharia::Curso de Engenharia de Produção
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede2.pucgoias.edu.br/handle/tede/4117
Resumo: The development of an effective planning process for the sequence of processing orders in manufacturing systems programming is a task with a high degree of complexity. The absence of platforms for experimentation simulation of the scale of production, whatever the typology: flow shop, job shop, open shop, hampers the methodological learning curve for this type of problem. This one work proposes the design of a web application, which implements a genetic algorithm (GA) to minimize the makespan (completion time), to allow simulation of benchmark sets of production scheduling in job shop manufacturing systems. The web application is available at <http://iproductionscheduling.com> and was developed using Python and HTML5 languages. In this way, it is possible to carry out optimized simulations of the instances of the type abz, dum, ft, yn, la, orb, swv and ta; following the premise that the job emerges according to a production order issued with manufacturing schedule and time specifications with particularities contained in a benchmark set. The genetic operators (roulette crossover and mutations) were adapted to promote intensification and exploration in the search space. Elitism and random immigrants were used as a technique for controlling population diversity. In the testing phase, were tested in isolation with the abz5 10 × 10 of different variations in GA parameters in the expected result. After this, the application was evaluated from two instances, abz5 10 × 10 and ft06 10 × 10, with results compatible with those of the recent literature, obtained by other heuristic methods. At Experiments carried out proved that the algorithm implemented in the core of the page the current optimal limits and adds when it provides experimentation and shows the results of the Gantt chart, in addition to shown tables and graphs to evaluate the optimization process with the parameters determined by the user.
id PUC_GO_ed75afb9fde93c062d6515fdf4e874c2
oai_identifier_str oai:ambar:tede/4117
network_acronym_str PUC_GO
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás)
repository_id_str
spelling Dantas, Maria José Pereirahttp://lattes.cnpq.br/5115002204148904Machado, Ricardo Luizhttp://lattes.cnpq.br/4103684476705320Carmo, Iran Martins dohttp://lattes.cnpq.br/2418951329099161http://lattes.cnpq.br/7809391631618989Martins, Dayvid Wesley Pereira2019-02-15T10:25:25Z2018-04-05MARTINS, Dayvid Wesley Pereira. Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes. 2018. 92 fls. Dissertação (Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas) - Pontifícia Universidade Católica de Goiás, Goiânia-GO.https://tede2.pucgoias.edu.br/handle/tede/4117The development of an effective planning process for the sequence of processing orders in manufacturing systems programming is a task with a high degree of complexity. The absence of platforms for experimentation simulation of the scale of production, whatever the typology: flow shop, job shop, open shop, hampers the methodological learning curve for this type of problem. This one work proposes the design of a web application, which implements a genetic algorithm (GA) to minimize the makespan (completion time), to allow simulation of benchmark sets of production scheduling in job shop manufacturing systems. The web application is available at <http://iproductionscheduling.com> and was developed using Python and HTML5 languages. In this way, it is possible to carry out optimized simulations of the instances of the type abz, dum, ft, yn, la, orb, swv and ta; following the premise that the job emerges according to a production order issued with manufacturing schedule and time specifications with particularities contained in a benchmark set. The genetic operators (roulette crossover and mutations) were adapted to promote intensification and exploration in the search space. Elitism and random immigrants were used as a technique for controlling population diversity. In the testing phase, were tested in isolation with the abz5 10 × 10 of different variations in GA parameters in the expected result. After this, the application was evaluated from two instances, abz5 10 × 10 and ft06 10 × 10, with results compatible with those of the recent literature, obtained by other heuristic methods. At Experiments carried out proved that the algorithm implemented in the core of the page the current optimal limits and adds when it provides experimentation and shows the results of the Gantt chart, in addition to shown tables and graphs to evaluate the optimization process with the parameters determined by the user.A elaboração de um processo de planejamento eficaz, para a sequência de processamento de ordens de produção na programação de sistemas de manufatura, é uma tarefa com alto grau de complexidade. A ausência de plataformas para experimentações simuladas da escala de produção, qualquer que seja a tipologia: flow shop, job shop, open shop, dificulta a curva de aprendizagem metodológica para este tipo de problema. Este trabalho propõe a concepção de um aplicativo web, que implementa um algoritmo genético (AG) personalizado para minimizar o makespan (tempo de finalização), de modo a permitir experimentações simuladas dos benchmark sets de escalonamento da produção em sistemas de manufatura do tipo job shop. O aplicativo web está disponível em <http://iproductionscheduling.com> e foi desenvolvido utilizando as linguagens Python e HTML5. Desse modo, é possível realizar online simulações otimizadas da escala de produção de instâncias do tipo abz, dum, ft, yn, la, orb, swv e ta, seguindo a premissa que o job emerge segundo uma ordem de produção emitida com especificações de roteiro de fabricação e tempo de processo com particularidades próprias contidas em um benchmark set. Os operadores genéticos propostos (crossover por roleta e mutações) foram adaptados para promover a intensificação e exploração no espaço de busca. Utilizou-se o elitismo e imigrantes aleatórios como técnica de controle da diversidade populacional. Na fase de ensaios, os operadores genéticos foram testados de forma isolada com a instância abz5 10 × 10 para verificar o impacto de diferentes variações nos parâmetros do AG no resultado esperado. Após isto, o aplicativo foi avaliado a partir de duas instâncias, sendo a abz5 10 × 10 e ft06 6 × 6, com resultados compatíveis aos da literatura recente, obtidos por outros métodos heurísticos. As experimentações realizadas comprovaram que o algoritmo implementado no núcleo da página web, se aproxima dos atuais limites ótimos e acrescenta quando disponibiliza um ambiente de experimentação e mostra os resultados do escalonamento em Gráficos de Gantt, além de apresentar tabelas e gráficos para avaliação do processo de otimização com os parâmetros determinados pelo usuário.Submitted by admin tede (tede@pucgoias.edu.br) on 2019-02-15T10:25:24Z No. of bitstreams: 1 Dayvid Wesley Pereira Martins.pdf: 10590039 bytes, checksum: 8b6bf896467db8c60c843b91b3d848d8 (MD5)Made available in DSpace on 2019-02-15T10:25:25Z (GMT). No. of bitstreams: 1 Dayvid Wesley Pereira Martins.pdf: 10590039 bytes, checksum: 8b6bf896467db8c60c843b91b3d848d8 (MD5) Previous issue date: 2018-04-05application/pdfhttps://tede2.pucgoias.edu.br/retrieve/12900/Dayvid%20Wesley%20Pereira%20Martins.pdf.jpgporPontifícia Universidade Católica de GoiásPrograma de Pós-Graduação STRICTO SENSU em Engenharia de Produção e SistemasPUC GoiásBrasilEscola de Engenharia::Curso de Engenharia de ProduçãoScheduling, Aplicativo web, Benchmark sets, Algoritmo genético, Otimização heurística.Key words: Scheduling, Web Application, Benchmark sets, Genetic Algorithm, Optimization Heuristic.ENGENHARIAS::ENGENHARIA DE PRODUCAOEscalonamento da produção para sistema de manufatura job shop com parâmetros inteligentesProduction Scheduling For Manufacturing System Job Shop With Intelligent Parametersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás)instname:Pontifícia Universidade Católica de Goiás (PUC-GO)instacron:PUC_GOTHUMBNAILDayvid Wesley Pereira Martins.pdf.jpgDayvid Wesley Pereira Martins.pdf.jpgimage/jpeg3418http://localhost:8080/tede/bitstream/tede/4117/4/Dayvid+Wesley+Pereira+Martins.pdf.jpg94deda0490d2bee36da41adc085f6a74MD54TEXTDayvid Wesley Pereira Martins.pdf.txtDayvid Wesley Pereira Martins.pdf.txttext/plain170433http://localhost:8080/tede/bitstream/tede/4117/3/Dayvid+Wesley+Pereira+Martins.pdf.txtb7d0c51ccf4a320f86294d46f879c341MD53ORIGINALDayvid Wesley Pereira Martins.pdfDayvid Wesley Pereira Martins.pdfapplication/pdf10590039http://localhost:8080/tede/bitstream/tede/4117/2/Dayvid+Wesley+Pereira+Martins.pdf8b6bf896467db8c60c843b91b3d848d8MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82001http://localhost:8080/tede/bitstream/tede/4117/1/license.txtfd9262f8b1e1c170dee71e4fbec6b16cMD51tede/41172025-12-02 12:12:37.608oai:ambar:tede/4117CkxJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIFBvbnRpZsOtY2lhIFVuaXZlcnNpZGFkZSBDYXTDs2xpY2EgZGUgR29pw6FzIChQVUMtR09Jw4FTKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgUFVDLUdPScOBUyBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBQVUMtR09Jw4FTIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgUFVDLUdPScOBUyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBQVUMtR09Jw4FTLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgUFVDLUdPScOBUyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KBiblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucgoias.edu.br:8080/http://tede2.pucgoias.edu.br:8080/oai/requesttede@pucgoias.edu.bropendoar:65932025-12-02T14:12:37Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás) - Pontifícia Universidade Católica de Goiás (PUC-GO)false
dc.title.eng.fl_str_mv Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes
dc.title.alternative.eng.fl_str_mv Production Scheduling For Manufacturing System Job Shop With Intelligent Parameters
title Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes
spellingShingle Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes
Martins, Dayvid Wesley Pereira
Scheduling, Aplicativo web, Benchmark sets, Algoritmo genético, Otimização heurística.
Key words: Scheduling, Web Application, Benchmark sets, Genetic Algorithm, Optimization Heuristic.
ENGENHARIAS::ENGENHARIA DE PRODUCAO
title_short Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes
title_full Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes
title_fullStr Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes
title_full_unstemmed Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes
title_sort Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes
author Martins, Dayvid Wesley Pereira
author_facet Martins, Dayvid Wesley Pereira
author_role author
dc.contributor.advisor1.fl_str_mv Dantas, Maria José Pereira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5115002204148904
dc.contributor.referee1.fl_str_mv Machado, Ricardo Luiz
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/4103684476705320
dc.contributor.referee2.fl_str_mv Carmo, Iran Martins do
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2418951329099161
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7809391631618989
dc.contributor.author.fl_str_mv Martins, Dayvid Wesley Pereira
contributor_str_mv Dantas, Maria José Pereira
Machado, Ricardo Luiz
Carmo, Iran Martins do
dc.subject.por.fl_str_mv Scheduling, Aplicativo web, Benchmark sets, Algoritmo genético, Otimização heurística.
topic Scheduling, Aplicativo web, Benchmark sets, Algoritmo genético, Otimização heurística.
Key words: Scheduling, Web Application, Benchmark sets, Genetic Algorithm, Optimization Heuristic.
ENGENHARIAS::ENGENHARIA DE PRODUCAO
dc.subject.eng.fl_str_mv Key words: Scheduling, Web Application, Benchmark sets, Genetic Algorithm, Optimization Heuristic.
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE PRODUCAO
description The development of an effective planning process for the sequence of processing orders in manufacturing systems programming is a task with a high degree of complexity. The absence of platforms for experimentation simulation of the scale of production, whatever the typology: flow shop, job shop, open shop, hampers the methodological learning curve for this type of problem. This one work proposes the design of a web application, which implements a genetic algorithm (GA) to minimize the makespan (completion time), to allow simulation of benchmark sets of production scheduling in job shop manufacturing systems. The web application is available at <http://iproductionscheduling.com> and was developed using Python and HTML5 languages. In this way, it is possible to carry out optimized simulations of the instances of the type abz, dum, ft, yn, la, orb, swv and ta; following the premise that the job emerges according to a production order issued with manufacturing schedule and time specifications with particularities contained in a benchmark set. The genetic operators (roulette crossover and mutations) were adapted to promote intensification and exploration in the search space. Elitism and random immigrants were used as a technique for controlling population diversity. In the testing phase, were tested in isolation with the abz5 10 × 10 of different variations in GA parameters in the expected result. After this, the application was evaluated from two instances, abz5 10 × 10 and ft06 10 × 10, with results compatible with those of the recent literature, obtained by other heuristic methods. At Experiments carried out proved that the algorithm implemented in the core of the page the current optimal limits and adds when it provides experimentation and shows the results of the Gantt chart, in addition to shown tables and graphs to evaluate the optimization process with the parameters determined by the user.
publishDate 2018
dc.date.issued.fl_str_mv 2018-04-05
dc.date.accessioned.fl_str_mv 2019-02-15T10:25:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MARTINS, Dayvid Wesley Pereira. Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes. 2018. 92 fls. Dissertação (Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas) - Pontifícia Universidade Católica de Goiás, Goiânia-GO.
dc.identifier.uri.fl_str_mv https://tede2.pucgoias.edu.br/handle/tede/4117
identifier_str_mv MARTINS, Dayvid Wesley Pereira. Escalonamento da produção para sistema de manufatura job shop com parâmetros inteligentes. 2018. 92 fls. Dissertação (Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas) - Pontifícia Universidade Católica de Goiás, Goiânia-GO.
url https://tede2.pucgoias.edu.br/handle/tede/4117
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas
dc.publisher.initials.fl_str_mv PUC Goiás
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola de Engenharia::Curso de Engenharia de Produção
publisher.none.fl_str_mv Pontifícia Universidade Católica de Goiás
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás)
instname:Pontifícia Universidade Católica de Goiás (PUC-GO)
instacron:PUC_GO
instname_str Pontifícia Universidade Católica de Goiás (PUC-GO)
instacron_str PUC_GO
institution PUC_GO
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás)
collection Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás)
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/4117/4/Dayvid+Wesley+Pereira+Martins.pdf.jpg
http://localhost:8080/tede/bitstream/tede/4117/3/Dayvid+Wesley+Pereira+Martins.pdf.txt
http://localhost:8080/tede/bitstream/tede/4117/2/Dayvid+Wesley+Pereira+Martins.pdf
http://localhost:8080/tede/bitstream/tede/4117/1/license.txt
bitstream.checksum.fl_str_mv 94deda0490d2bee36da41adc085f6a74
b7d0c51ccf4a320f86294d46f879c341
8b6bf896467db8c60c843b91b3d848d8
fd9262f8b1e1c170dee71e4fbec6b16c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_GOAIS (TEDE-PUC Goiás) - Pontifícia Universidade Católica de Goiás (PUC-GO)
repository.mail.fl_str_mv tede@pucgoias.edu.br
_version_ 1856222754703933440