[en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: ALBERTO IRIARTE LANAS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7233&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7233&idi=2
http://doi.org/10.17771/PUCRio.acad.7233
Resumo: [pt] Esta dissertação investiga a utilização de um sistema Neuro-Fuzzy Hierárquico para previsão de séries e a extração de regras fuzzy em aplicações de Mineração de Dados. O objetivo do trabalho foi estender o modelo Neuro- Fuzzy Hierárquico BSP para a classificação de registros e a previsão de séries temporais. O processo de classificação de registros no contexto de Mineração de Dados consiste na extração de regras de associação que melhor caracterizem, através de sua acurácia e abrangência, um determinado grupo de registros de um banco de dados (BD). A previsão de séries temporais, outra tarefa comum em Mineração de Dados tem como objetivo prever o comportamento de uma série temporal no instante t+k (k ? 1).O trabalho consistiu de 5 etapas principais: elaborar um survey dos principais sistemas e modelos mais utilizados nas aplicações de Mineração de Dados; avaliar o desempenho do sistema NFHB original em aplicações de Mineração de Dados; desenvolver uma extensão do modelo NFHB dedicado à classificação de registros em uma BD; desenvolver um novo modelo híbrido Neuro-Fuzzy Genético para o ajuste automático dos parâmetros do sistema dedicado a previsão de séries temporais; e o estudo dos casos. O estudo da área resultou num survey sobre os principais modelos para Mineração de Dados. São apresentados os modelos mais utilizados em tarefas de classificação e extração de regras tais como: redes neurais, árvores de decisão crisp e fuzzy, algoritmos genéticos, estatística e sistemas neuro-fuzzy. Na etapa de avaliação do modelo NFHB original, foi verificado que além do tradicional aprendizado dos parâmetros, comuns às redes neurais e aos sistemas neuro-fuzzy, o modelo possui as seguintes aracterísticas: aprendizado da estrutura, a partir do uso de particionamentos recursivos; número maior de entradas que o habitualmente encontrado nos sistemas neuro-fuzzy; e regras com hierarquia, características adequadas para as aplicações de Mineração de Dados. Entretanto, o processo de extração de regras e a seleção de atributos não são adequados para este tipo de aplicação, assim como a excessiva complexidade da parametrização do modelo para aplicações de previsão de séries temporais. Uma extensão ao modelo NFHB original foi então proposta para aplicações de classificação de registros no contexto da Mineração de Dados onde se têm como objetivo principal a extração de informação em forma de regras interpretáveis. Foi necessário modificar a seleção de atributos e o processo original de extração de regras. O sistema fuzzy do tipo Takagi-Sugeno do modelo NFHB original fornece regras inadequadas do ponto de vista da Mineração de Dados. O novo modelo NFHB, dotado das modificações necessárias, mostrou um ótimo desempenho na extração de regras fuzzy válidas que descrevem a informação contida no banco de dados. As medidas de avaliação normalmente usadas para analisar regras crisp (Se x1 é <14.3 e...), como abrangência e acurácia, foram modificadas para poderem ser aplicadas ao caso de avaliação das regras fuzzy (Se x1 é Baixo e..) extraídas pelo sistema NFHB após da fase de aprendizado. A quantidade e a qualidade das regras extraídas é um ponto fundamental dos sistemas voltados para aplicações de Mineração de Dados, que buscam sempre obter o menor número de regras e da maior qualidade possível. Nesse sentido, o processo de seleção das características de entrada foi alterado para evitar particionamentos excessivos, ou seja regras desnecessárias. Foram implementadas duas estratégias de seleção (Fixa e Adaptativa) em função de diferentes medidas de avaliação como a Entropia e o método de Jang. Um novo modelo híbrido neuro-fuzzy genético para previsão de séries temporais foi criado para resolver o problema da excessiva complexidade de parametrização do sistema, o qual conta com mais de 15 parâmetros.Foi proposto um novo modelo híbrido neuro-fuzzy genético capaz de evoluir e obter um conjunto de parâmetros adequado par
id PUC_RIO-1_0559d70c12782a7f43cf19083152469c
oai_identifier_str oai:MAXWELL.puc-rio.br:7233
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str
spelling [en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS [pt] SISTEMA NEURO-FUZZY HIERÁRQUICO BSP PARA PREVISÃO E EXTRAÇÃO DE REGRAS FUZZY EM APLICAÇÕES DE DATA MINING [pt] CLASSIFICACAO[pt] EXTRACAO DE REGRAS[pt] SISTEMAS NEURO-FUZZY[pt] PREVISAO[pt] MINERACAO DE DADOS[en] CLASSIFICATION[en] EXTRACTION OF RULES[en] NEURO-FUZZY SYSTEMS[en] FORECASTING[en] DATA MINING[pt] Esta dissertação investiga a utilização de um sistema Neuro-Fuzzy Hierárquico para previsão de séries e a extração de regras fuzzy em aplicações de Mineração de Dados. O objetivo do trabalho foi estender o modelo Neuro- Fuzzy Hierárquico BSP para a classificação de registros e a previsão de séries temporais. O processo de classificação de registros no contexto de Mineração de Dados consiste na extração de regras de associação que melhor caracterizem, através de sua acurácia e abrangência, um determinado grupo de registros de um banco de dados (BD). A previsão de séries temporais, outra tarefa comum em Mineração de Dados tem como objetivo prever o comportamento de uma série temporal no instante t+k (k ? 1).O trabalho consistiu de 5 etapas principais: elaborar um survey dos principais sistemas e modelos mais utilizados nas aplicações de Mineração de Dados; avaliar o desempenho do sistema NFHB original em aplicações de Mineração de Dados; desenvolver uma extensão do modelo NFHB dedicado à classificação de registros em uma BD; desenvolver um novo modelo híbrido Neuro-Fuzzy Genético para o ajuste automático dos parâmetros do sistema dedicado a previsão de séries temporais; e o estudo dos casos. O estudo da área resultou num survey sobre os principais modelos para Mineração de Dados. São apresentados os modelos mais utilizados em tarefas de classificação e extração de regras tais como: redes neurais, árvores de decisão crisp e fuzzy, algoritmos genéticos, estatística e sistemas neuro-fuzzy. Na etapa de avaliação do modelo NFHB original, foi verificado que além do tradicional aprendizado dos parâmetros, comuns às redes neurais e aos sistemas neuro-fuzzy, o modelo possui as seguintes aracterísticas: aprendizado da estrutura, a partir do uso de particionamentos recursivos; número maior de entradas que o habitualmente encontrado nos sistemas neuro-fuzzy; e regras com hierarquia, características adequadas para as aplicações de Mineração de Dados. Entretanto, o processo de extração de regras e a seleção de atributos não são adequados para este tipo de aplicação, assim como a excessiva complexidade da parametrização do modelo para aplicações de previsão de séries temporais. Uma extensão ao modelo NFHB original foi então proposta para aplicações de classificação de registros no contexto da Mineração de Dados onde se têm como objetivo principal a extração de informação em forma de regras interpretáveis. Foi necessário modificar a seleção de atributos e o processo original de extração de regras. O sistema fuzzy do tipo Takagi-Sugeno do modelo NFHB original fornece regras inadequadas do ponto de vista da Mineração de Dados. O novo modelo NFHB, dotado das modificações necessárias, mostrou um ótimo desempenho na extração de regras fuzzy válidas que descrevem a informação contida no banco de dados. As medidas de avaliação normalmente usadas para analisar regras crisp (Se x1 é <14.3 e...), como abrangência e acurácia, foram modificadas para poderem ser aplicadas ao caso de avaliação das regras fuzzy (Se x1 é Baixo e..) extraídas pelo sistema NFHB após da fase de aprendizado. A quantidade e a qualidade das regras extraídas é um ponto fundamental dos sistemas voltados para aplicações de Mineração de Dados, que buscam sempre obter o menor número de regras e da maior qualidade possível. Nesse sentido, o processo de seleção das características de entrada foi alterado para evitar particionamentos excessivos, ou seja regras desnecessárias. Foram implementadas duas estratégias de seleção (Fixa e Adaptativa) em função de diferentes medidas de avaliação como a Entropia e o método de Jang. Um novo modelo híbrido neuro-fuzzy genético para previsão de séries temporais foi criado para resolver o problema da excessiva complexidade de parametrização do sistema, o qual conta com mais de 15 parâmetros.Foi proposto um novo modelo híbrido neuro-fuzzy genético capaz de evoluir e obter um conjunto de parâmetros adequado par[en] This dissertation investigates the use of a Neuro-Fuzzy Hierarchical system for time series forecasting and fuzzy rule extraction for Data Mining applications. The objective of this work was to extend the Neuro-Fuzzy BSP Hierarchical model for the classification of registers and time series forecasting. The process of classification of registers in the Data Mining context consists of extracting association rules that best characterise, through its accuracy and coverage measures, a certain group of registers of database (DB). The time series forecasting other common task in Data Mining, has a main objective to foresee the behavior of a time series in the instant t+k (k>=1). The work consisted of 5 main stages: to elaborate a survey of the main systems and the most common models in Data Mining applications; to evaluate the performance of the original NFHB system in Data Mining applicatons; to develop an extension of the NFHB model dedicated to the classification of registers in a DB; to develop a new Neuro-Fuzzy Genetic hybrid model for the automatic adjustment of the parameters of the system for time series forecasting applicatons; and the case estudies. The study of the area resulted in a survey of the main Data Mining models. The most common methods used in Data Mining application are presented such as: neural nets, crisp and fuzzy decision trees, genetic algorithms, statistics and neuro-fuzzy systems. In the stage of evaluation of the original NFHB model, it verified that besides the traditional learning of the parameters, common to the neural nets and the neuro-fuzzy systems, the model possesses the following characteristics: learning of the structure; recursive partitioning; larger number of inputs than usually found on the neuro-fuzzy systems; rule with hierarchy; which are characteristics adapted for Data Mining applications. However the rule extraction process and attributes selection are not appropriate for this type of applications, as well as the excessive complexity of the tuning of the model for time series forecasting applicatons. An extension of the original NFHB model was then proposed for applicatons of classification of registers in the Data Mining context, where the main objective in the extraction of information in form of interpratable rules. It was necessary to modify the attributes selection and the original rule extraction process. The Takagi-Sugeno fuzzy system of the original NFHB model supplies inadequate rules, from the Data Mining point of view. The new NFHB models, endowed with necessary modifications, showed good performance in extracting valid fuzzy rules that describe the information contained in the database. The evaluation metrics, usually used to analyse crips rules (If x1 is <14.3 and), as coverage and accuracy, were modified to be applied to the evaluation of the fuzzy rules (If x1 is Low and) extracted from the NFHB system after the learning process. The amount and quality of the extracted rules are important points of the systems dedicated for Data Mining applicatons, where the target is to obtain the smallest number of rules and of the best quality. In that sense, the input selection strategies were implemented (Static and Adaptive), using different evaluation measures as Entropy and the jang algorithm. A new genetic neuro-fuzzy hybrid model for time series forecasting was created to solve the problem of the excessive complexity of the model tuning, which comprises more than 15 parameters. A new model wes proposed, a genetic neuro-fuzzy hybrid, model capable to develop and to obtain an appropriate set of parameters for the forecasting of time series. The new hybrid, model capable to develop and to obtain an appropriate set of parameters for the forecasting of time series. The new hybrid model presented good results with different types of series. A tool based on the NFHB model was developed for classification and forecasting applications. ThMAXWELLMARLEY MARIA BERNARDES REBUZZI VELLASCOMARLEY MARIA BERNARDES REBUZZI VELLASCOMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOALBERTO IRIARTE LANAS2005-10-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7233&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7233&idi=2http://doi.org/10.17771/PUCRio.acad.7233porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2022-08-25T00:00:00Zoai:MAXWELL.puc-rio.br:7233Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342022-08-25T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS
[pt] SISTEMA NEURO-FUZZY HIERÁRQUICO BSP PARA PREVISÃO E EXTRAÇÃO DE REGRAS FUZZY EM APLICAÇÕES DE DATA MINING
title [en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS
spellingShingle [en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS
ALBERTO IRIARTE LANAS
[pt] CLASSIFICACAO
[pt] EXTRACAO DE REGRAS
[pt] SISTEMAS NEURO-FUZZY
[pt] PREVISAO
[pt] MINERACAO DE DADOS
[en] CLASSIFICATION
[en] EXTRACTION OF RULES
[en] NEURO-FUZZY SYSTEMS
[en] FORECASTING
[en] DATA MINING
title_short [en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS
title_full [en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS
title_fullStr [en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS
title_full_unstemmed [en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS
title_sort [en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS
author ALBERTO IRIARTE LANAS
author_facet ALBERTO IRIARTE LANAS
author_role author
dc.contributor.none.fl_str_mv MARLEY MARIA BERNARDES REBUZZI VELLASCO
MARLEY MARIA BERNARDES REBUZZI VELLASCO
MARCO AURELIO CAVALCANTI PACHECO
MARCO AURELIO CAVALCANTI PACHECO
MARCO AURELIO CAVALCANTI PACHECO
dc.contributor.author.fl_str_mv ALBERTO IRIARTE LANAS
dc.subject.por.fl_str_mv [pt] CLASSIFICACAO
[pt] EXTRACAO DE REGRAS
[pt] SISTEMAS NEURO-FUZZY
[pt] PREVISAO
[pt] MINERACAO DE DADOS
[en] CLASSIFICATION
[en] EXTRACTION OF RULES
[en] NEURO-FUZZY SYSTEMS
[en] FORECASTING
[en] DATA MINING
topic [pt] CLASSIFICACAO
[pt] EXTRACAO DE REGRAS
[pt] SISTEMAS NEURO-FUZZY
[pt] PREVISAO
[pt] MINERACAO DE DADOS
[en] CLASSIFICATION
[en] EXTRACTION OF RULES
[en] NEURO-FUZZY SYSTEMS
[en] FORECASTING
[en] DATA MINING
description [pt] Esta dissertação investiga a utilização de um sistema Neuro-Fuzzy Hierárquico para previsão de séries e a extração de regras fuzzy em aplicações de Mineração de Dados. O objetivo do trabalho foi estender o modelo Neuro- Fuzzy Hierárquico BSP para a classificação de registros e a previsão de séries temporais. O processo de classificação de registros no contexto de Mineração de Dados consiste na extração de regras de associação que melhor caracterizem, através de sua acurácia e abrangência, um determinado grupo de registros de um banco de dados (BD). A previsão de séries temporais, outra tarefa comum em Mineração de Dados tem como objetivo prever o comportamento de uma série temporal no instante t+k (k ? 1).O trabalho consistiu de 5 etapas principais: elaborar um survey dos principais sistemas e modelos mais utilizados nas aplicações de Mineração de Dados; avaliar o desempenho do sistema NFHB original em aplicações de Mineração de Dados; desenvolver uma extensão do modelo NFHB dedicado à classificação de registros em uma BD; desenvolver um novo modelo híbrido Neuro-Fuzzy Genético para o ajuste automático dos parâmetros do sistema dedicado a previsão de séries temporais; e o estudo dos casos. O estudo da área resultou num survey sobre os principais modelos para Mineração de Dados. São apresentados os modelos mais utilizados em tarefas de classificação e extração de regras tais como: redes neurais, árvores de decisão crisp e fuzzy, algoritmos genéticos, estatística e sistemas neuro-fuzzy. Na etapa de avaliação do modelo NFHB original, foi verificado que além do tradicional aprendizado dos parâmetros, comuns às redes neurais e aos sistemas neuro-fuzzy, o modelo possui as seguintes aracterísticas: aprendizado da estrutura, a partir do uso de particionamentos recursivos; número maior de entradas que o habitualmente encontrado nos sistemas neuro-fuzzy; e regras com hierarquia, características adequadas para as aplicações de Mineração de Dados. Entretanto, o processo de extração de regras e a seleção de atributos não são adequados para este tipo de aplicação, assim como a excessiva complexidade da parametrização do modelo para aplicações de previsão de séries temporais. Uma extensão ao modelo NFHB original foi então proposta para aplicações de classificação de registros no contexto da Mineração de Dados onde se têm como objetivo principal a extração de informação em forma de regras interpretáveis. Foi necessário modificar a seleção de atributos e o processo original de extração de regras. O sistema fuzzy do tipo Takagi-Sugeno do modelo NFHB original fornece regras inadequadas do ponto de vista da Mineração de Dados. O novo modelo NFHB, dotado das modificações necessárias, mostrou um ótimo desempenho na extração de regras fuzzy válidas que descrevem a informação contida no banco de dados. As medidas de avaliação normalmente usadas para analisar regras crisp (Se x1 é <14.3 e...), como abrangência e acurácia, foram modificadas para poderem ser aplicadas ao caso de avaliação das regras fuzzy (Se x1 é Baixo e..) extraídas pelo sistema NFHB após da fase de aprendizado. A quantidade e a qualidade das regras extraídas é um ponto fundamental dos sistemas voltados para aplicações de Mineração de Dados, que buscam sempre obter o menor número de regras e da maior qualidade possível. Nesse sentido, o processo de seleção das características de entrada foi alterado para evitar particionamentos excessivos, ou seja regras desnecessárias. Foram implementadas duas estratégias de seleção (Fixa e Adaptativa) em função de diferentes medidas de avaliação como a Entropia e o método de Jang. Um novo modelo híbrido neuro-fuzzy genético para previsão de séries temporais foi criado para resolver o problema da excessiva complexidade de parametrização do sistema, o qual conta com mais de 15 parâmetros.Foi proposto um novo modelo híbrido neuro-fuzzy genético capaz de evoluir e obter um conjunto de parâmetros adequado par
publishDate 2005
dc.date.none.fl_str_mv 2005-10-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7233&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7233&idi=2
http://doi.org/10.17771/PUCRio.acad.7233
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7233&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7233&idi=2
http://doi.org/10.17771/PUCRio.acad.7233
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1856395888227778560