[en] A DATA-CENTRIC APPROACH TO IMPROVING SEGMENTATION MODELS WITH DEEP LEARNING IN MAMMOGRAPHY IMAGES

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: SANTIAGO STIVEN VALLEJO SILVA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65369&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65369&idi=2
http://doi.org/10.17771/PUCRio.acad.65369
Resumo: [pt] A segmentação semântica das estruturas anatômicas em imagens de mamografia desempenha um papel significativo no apoio da análise médica. Esta tarefa pode ser abordada com o uso de um modelo de aprendizado de máquina, que deve ser capaz de identificar e delinear corretamente as estruturas de interesse tais como papila, tecido fibroglandular, músculo peitoral e tecido gorduroso. No entanto, a segmentação de estruturas pequenas como papila e peitoral é frequentemente um desafio. Sendo o maior desafio o reconhecimento ou deteção do músculo peitoral na vista craniocaudal (CC), devido ao seu tamanho variável, possíveis ausências e sobreposição de tecido fibroglandular. Para enfrentar esse desafio, este trabalho propõe uma abordagem centrada em dados para melhorar o desempenho do modelo de segmentação na papila mamária e no músculo peitoral. Especificamente, aprimorando os dados de treinamento e as anotações em duas etapas. A primeira etapa é baseada em modificações nas anotações. Foram desenvolvidos algoritmos para buscar automaticamente anotações fora do comum dependendo da sua forma. Com estas anotações encontradas, foi feita uma revisão e correção manual. A segunda etapa envolve um downsampling do conjunto de dados, reduzindo as amostras de imagens do conjunto de treinamento. Foram analisados os casos de falsos positivos e falsos negativos, identificando as imagens que fornecem informações confusas, para posteriormente removê-las do conjunto. Em seguida, foram treinados modelos usando os dados de cada etapa e foram obtidas as métricas de classificação para o músculo peitoral em vista CC e o IoU para cada estrutura nas vistas CC e MLO (Mediolateral Oblíqua). Os resultados do treinamento mostram uma melhora progressiva na identificação e segmentação do músculo peitoral em vista CC e uma melhora na papila em vista MLO, mantendo as métricas para as demais estruturas.
id PUC_RIO-1_06caee93e2fe51e69d01ac368bee758e
oai_identifier_str oai:MAXWELL.puc-rio.br:65369
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str
spelling [en] A DATA-CENTRIC APPROACH TO IMPROVING SEGMENTATION MODELS WITH DEEP LEARNING IN MAMMOGRAPHY IMAGES [pt] UMA ABORDAGEM CENTRADA EM DADOS PARA O APRIMORAMENTO DE MODELOS DE SEGMENTAÇÃO COM APRENDIZADO PROFUNDO EM IMAGENS DE MAMOGRAFIA [pt] MACHINE LEARNING[pt] DATA-CENTRIC[pt] MAMOGRAFIA[pt] SEGMENTACAO SEMANTICA[en] MACHINE LEARNING[en] DATA-CENTRIC[en] MAMMOGRAM[en] PIXEL-WISE SEMANTIC SEGMENTATION[pt] A segmentação semântica das estruturas anatômicas em imagens de mamografia desempenha um papel significativo no apoio da análise médica. Esta tarefa pode ser abordada com o uso de um modelo de aprendizado de máquina, que deve ser capaz de identificar e delinear corretamente as estruturas de interesse tais como papila, tecido fibroglandular, músculo peitoral e tecido gorduroso. No entanto, a segmentação de estruturas pequenas como papila e peitoral é frequentemente um desafio. Sendo o maior desafio o reconhecimento ou deteção do músculo peitoral na vista craniocaudal (CC), devido ao seu tamanho variável, possíveis ausências e sobreposição de tecido fibroglandular. Para enfrentar esse desafio, este trabalho propõe uma abordagem centrada em dados para melhorar o desempenho do modelo de segmentação na papila mamária e no músculo peitoral. Especificamente, aprimorando os dados de treinamento e as anotações em duas etapas. A primeira etapa é baseada em modificações nas anotações. Foram desenvolvidos algoritmos para buscar automaticamente anotações fora do comum dependendo da sua forma. Com estas anotações encontradas, foi feita uma revisão e correção manual. A segunda etapa envolve um downsampling do conjunto de dados, reduzindo as amostras de imagens do conjunto de treinamento. Foram analisados os casos de falsos positivos e falsos negativos, identificando as imagens que fornecem informações confusas, para posteriormente removê-las do conjunto. Em seguida, foram treinados modelos usando os dados de cada etapa e foram obtidas as métricas de classificação para o músculo peitoral em vista CC e o IoU para cada estrutura nas vistas CC e MLO (Mediolateral Oblíqua). Os resultados do treinamento mostram uma melhora progressiva na identificação e segmentação do músculo peitoral em vista CC e uma melhora na papila em vista MLO, mantendo as métricas para as demais estruturas. [en] The semantic segmentation of anatomical structures in mammography images plays a significant role in supporting medical analysis. This task can be approached using a machine learning model, which must be capable of identifying and accurately delineating the structures. However, segmentation of small structures such as nipple and pectoral is often challenging. Especially in there cognition or detection of the pectoral muscle in the craniocaudal (CC) view,due to its variable size, possible absences and overlapping of fibroglandular tissue.To tackle this challenge, this work proposes a data-centric approach to improvethe segmentation model s performance on the mammary papilla and pectoral muscle. Specifically, enhancing the training data and annotations in two stages.The first stage is based on modifications to the annotations. Algorithms were developed to automatically search for uncommon annotations dependingon their shape. Once these annotations were found, a manual review and correction were performed.The second stage involves downsampling the dataset, reducing the image samples in the training set. Cases of false positives and false negatives were analyzed, identifying images that provide confusing information, which were subsequently removed from the set. Next, models were trained using the data from each stage, and classification metrics were obtained for the pectoral muscle in the CC view and IoU for each structure in CC and MLO (mediolateral oblique) views. The training results show a progressive improvement in the identification and segmentation of the pectoral muscle in the CC view and an enhancement in the mammary papilla in the MLO view, while maintaining segmentation metricsfor the other structures.MAXWELLALBERTO BARBOSA RAPOSOSANTIAGO STIVEN VALLEJO SILVA2023-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65369&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65369&idi=2http://doi.org/10.17771/PUCRio.acad.65369porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2024-09-04T00:00:00Zoai:MAXWELL.puc-rio.br:65369Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342024-09-04T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [en] A DATA-CENTRIC APPROACH TO IMPROVING SEGMENTATION MODELS WITH DEEP LEARNING IN MAMMOGRAPHY IMAGES
[pt] UMA ABORDAGEM CENTRADA EM DADOS PARA O APRIMORAMENTO DE MODELOS DE SEGMENTAÇÃO COM APRENDIZADO PROFUNDO EM IMAGENS DE MAMOGRAFIA
title [en] A DATA-CENTRIC APPROACH TO IMPROVING SEGMENTATION MODELS WITH DEEP LEARNING IN MAMMOGRAPHY IMAGES
spellingShingle [en] A DATA-CENTRIC APPROACH TO IMPROVING SEGMENTATION MODELS WITH DEEP LEARNING IN MAMMOGRAPHY IMAGES
SANTIAGO STIVEN VALLEJO SILVA
[pt] MACHINE LEARNING
[pt] DATA-CENTRIC
[pt] MAMOGRAFIA
[pt] SEGMENTACAO SEMANTICA
[en] MACHINE LEARNING
[en] DATA-CENTRIC
[en] MAMMOGRAM
[en] PIXEL-WISE SEMANTIC SEGMENTATION
title_short [en] A DATA-CENTRIC APPROACH TO IMPROVING SEGMENTATION MODELS WITH DEEP LEARNING IN MAMMOGRAPHY IMAGES
title_full [en] A DATA-CENTRIC APPROACH TO IMPROVING SEGMENTATION MODELS WITH DEEP LEARNING IN MAMMOGRAPHY IMAGES
title_fullStr [en] A DATA-CENTRIC APPROACH TO IMPROVING SEGMENTATION MODELS WITH DEEP LEARNING IN MAMMOGRAPHY IMAGES
title_full_unstemmed [en] A DATA-CENTRIC APPROACH TO IMPROVING SEGMENTATION MODELS WITH DEEP LEARNING IN MAMMOGRAPHY IMAGES
title_sort [en] A DATA-CENTRIC APPROACH TO IMPROVING SEGMENTATION MODELS WITH DEEP LEARNING IN MAMMOGRAPHY IMAGES
author SANTIAGO STIVEN VALLEJO SILVA
author_facet SANTIAGO STIVEN VALLEJO SILVA
author_role author
dc.contributor.none.fl_str_mv ALBERTO BARBOSA RAPOSO
dc.contributor.author.fl_str_mv SANTIAGO STIVEN VALLEJO SILVA
dc.subject.por.fl_str_mv [pt] MACHINE LEARNING
[pt] DATA-CENTRIC
[pt] MAMOGRAFIA
[pt] SEGMENTACAO SEMANTICA
[en] MACHINE LEARNING
[en] DATA-CENTRIC
[en] MAMMOGRAM
[en] PIXEL-WISE SEMANTIC SEGMENTATION
topic [pt] MACHINE LEARNING
[pt] DATA-CENTRIC
[pt] MAMOGRAFIA
[pt] SEGMENTACAO SEMANTICA
[en] MACHINE LEARNING
[en] DATA-CENTRIC
[en] MAMMOGRAM
[en] PIXEL-WISE SEMANTIC SEGMENTATION
description [pt] A segmentação semântica das estruturas anatômicas em imagens de mamografia desempenha um papel significativo no apoio da análise médica. Esta tarefa pode ser abordada com o uso de um modelo de aprendizado de máquina, que deve ser capaz de identificar e delinear corretamente as estruturas de interesse tais como papila, tecido fibroglandular, músculo peitoral e tecido gorduroso. No entanto, a segmentação de estruturas pequenas como papila e peitoral é frequentemente um desafio. Sendo o maior desafio o reconhecimento ou deteção do músculo peitoral na vista craniocaudal (CC), devido ao seu tamanho variável, possíveis ausências e sobreposição de tecido fibroglandular. Para enfrentar esse desafio, este trabalho propõe uma abordagem centrada em dados para melhorar o desempenho do modelo de segmentação na papila mamária e no músculo peitoral. Especificamente, aprimorando os dados de treinamento e as anotações em duas etapas. A primeira etapa é baseada em modificações nas anotações. Foram desenvolvidos algoritmos para buscar automaticamente anotações fora do comum dependendo da sua forma. Com estas anotações encontradas, foi feita uma revisão e correção manual. A segunda etapa envolve um downsampling do conjunto de dados, reduzindo as amostras de imagens do conjunto de treinamento. Foram analisados os casos de falsos positivos e falsos negativos, identificando as imagens que fornecem informações confusas, para posteriormente removê-las do conjunto. Em seguida, foram treinados modelos usando os dados de cada etapa e foram obtidas as métricas de classificação para o músculo peitoral em vista CC e o IoU para cada estrutura nas vistas CC e MLO (Mediolateral Oblíqua). Os resultados do treinamento mostram uma melhora progressiva na identificação e segmentação do músculo peitoral em vista CC e uma melhora na papila em vista MLO, mantendo as métricas para as demais estruturas.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65369&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65369&idi=2
http://doi.org/10.17771/PUCRio.acad.65369
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65369&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65369&idi=2
http://doi.org/10.17771/PUCRio.acad.65369
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1856395966073012224