[en] A COMPARATIVE STUDY OF THE FORECAST CAPABILITY OF VOLATILITY MODELS

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: LUIS ANTONIO GUIMARAES BENEGAS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2213&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2213&idi=2
http://doi.org/10.17771/PUCRio.acad.2213
Resumo: [pt] O conceito de risco é definido como a distribuição de resultados inesperados devido a alterações nos valores das variáveis que descrevem o mercado. Entretanto, o risco não é uma variável observável e sua quantificação depende do modelo empregado para avaliá-lo. Portanto, o uso de diferentes modelos pode levar a previsões de risco significativamente diferentes.O objetivo principal desta dissertação é realizar um estudo comparativo dos modelos mais amplamente utilizados (medição de variância amostral nos últimos k períodos, modelos de amortecimento exponencial e o GARCH(1,1) de Bollerslev) quanto à capacidade preditiva da volatilidade.Esta dissertação compara os modelos de estimação de volatilidade citados acima quanto à sua capacidade preditiva para carteiras compostas por um conjunto de ações negociadas no mercado brasileiro. As previsões de volatilidade desses modelos serão comparadas com a volatilidade real fora da amostra. Como a volatilidade real não é uma variável observável, usou-se o mesmo procedimento adotado pelo RiskMetrics para o cálculo do fator de decaimento ótimo: assumiu-se a premissa que o retorno médio de cada uma das carteiras de ações estudadas é igual a zero e,como conseqüência disso, a previsão um passo à frente da variância do retorno realizada na data t é igual ao valor esperado do quadrado do retorno na data t.O objetivo final é concluir, por meio de técnicas de backtesting, qual dos modelos de previsão de volatilidade apresentou melhor performance quanto aos critérios de comparação vis-à-vis ao esforço computacional necessário. Dessa forma, pretende-se avaliar qual desses modelos oferece a melhor relação custo-benefício para o mercado acionário brasileiro.
id PUC_RIO-1_20a9ea6ccd19a29cf3f405bc41deb4a4
oai_identifier_str oai:MAXWELL.puc-rio.br:2213
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str
spelling [en] A COMPARATIVE STUDY OF THE FORECAST CAPABILITY OF VOLATILITY MODELS [pt] ESTUDO COMPARATIVO DA CAPACIDADE PREDITIVA DE MODELOS DE ESTIMAÇÃO DE VOLATILIDADE [pt] VOLATILIDADE[pt] MODELOS DE PREVISAO[pt] DOWNSIDE RISK[pt] SEMIVARIANCIA[pt] VARIANCIA[pt] MEDIDAS DE RISCO[pt] MODELOS DE ESTIMACAO[pt] GARCH[pt] RISCO[en] VOLATILITY MODELS[en] FORECASTING MODELS[en] DOWNSIDE RISK[en] SEMIVARIANCE[en] VARIANCE[en] RISK MEASURES[en] ESTIMATING MODELS[en] GARCH[en] RISK[pt] O conceito de risco é definido como a distribuição de resultados inesperados devido a alterações nos valores das variáveis que descrevem o mercado. Entretanto, o risco não é uma variável observável e sua quantificação depende do modelo empregado para avaliá-lo. Portanto, o uso de diferentes modelos pode levar a previsões de risco significativamente diferentes.O objetivo principal desta dissertação é realizar um estudo comparativo dos modelos mais amplamente utilizados (medição de variância amostral nos últimos k períodos, modelos de amortecimento exponencial e o GARCH(1,1) de Bollerslev) quanto à capacidade preditiva da volatilidade.Esta dissertação compara os modelos de estimação de volatilidade citados acima quanto à sua capacidade preditiva para carteiras compostas por um conjunto de ações negociadas no mercado brasileiro. As previsões de volatilidade desses modelos serão comparadas com a volatilidade real fora da amostra. Como a volatilidade real não é uma variável observável, usou-se o mesmo procedimento adotado pelo RiskMetrics para o cálculo do fator de decaimento ótimo: assumiu-se a premissa que o retorno médio de cada uma das carteiras de ações estudadas é igual a zero e,como conseqüência disso, a previsão um passo à frente da variância do retorno realizada na data t é igual ao valor esperado do quadrado do retorno na data t.O objetivo final é concluir, por meio de técnicas de backtesting, qual dos modelos de previsão de volatilidade apresentou melhor performance quanto aos critérios de comparação vis-à-vis ao esforço computacional necessário. Dessa forma, pretende-se avaliar qual desses modelos oferece a melhor relação custo-benefício para o mercado acionário brasileiro.[en] The risk concept is defined as the distribution of the unexpected results from variations in the values of the variables that describe the market. However, the variable risk is not observable and its measurement depends on which model is used in its evaluation. Thus, the application of different models could result in significant different risk forecasts.The goal of this study is to carry out a comparison within the largest used models (sample variance in the last k observations, exponentially smoothing models and the Bollerslev s model GARCH(1,1)). The study compares the models mentioned above regarding its forecast capability of the volatility for portfolios of selected brazilian stocks. The volatility forecasts will be compared to the actual out of sample volatility. As long as the actual volatility is not an observable variable, the same procedure adopted by RiskMetrics in the calculation of the optimum decay factor will be used: it assumes the premise that the average return of which one of the stock portfolios is equal zero and, as the consequence of this fact, the one step variance forecast of the portfolio return carried out on date t is equal to expected value of the squared return of date t.The final objective is to conclude, using backtesting techniques, which of the forecasting volatility models show the best performance regarding the comparison criterions vis-a-vis the demanding computer efforts. By this way, it was aimed to evaluate which of them offer the best cost-benefit relation for the brazilian equity market.MAXWELLTARA KESHAR NANDA BAIDYATARA KESHAR NANDA BAIDYALUIS ANTONIO GUIMARAES BENEGAS2002-01-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2213&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2213&idi=2http://doi.org/10.17771/PUCRio.acad.2213porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2018-06-11T00:00:00Zoai:MAXWELL.puc-rio.br:2213Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342018-06-11T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [en] A COMPARATIVE STUDY OF THE FORECAST CAPABILITY OF VOLATILITY MODELS
[pt] ESTUDO COMPARATIVO DA CAPACIDADE PREDITIVA DE MODELOS DE ESTIMAÇÃO DE VOLATILIDADE
title [en] A COMPARATIVE STUDY OF THE FORECAST CAPABILITY OF VOLATILITY MODELS
spellingShingle [en] A COMPARATIVE STUDY OF THE FORECAST CAPABILITY OF VOLATILITY MODELS
LUIS ANTONIO GUIMARAES BENEGAS
[pt] VOLATILIDADE
[pt] MODELOS DE PREVISAO
[pt] DOWNSIDE RISK
[pt] SEMIVARIANCIA
[pt] VARIANCIA
[pt] MEDIDAS DE RISCO
[pt] MODELOS DE ESTIMACAO
[pt] GARCH
[pt] RISCO
[en] VOLATILITY MODELS
[en] FORECASTING MODELS
[en] DOWNSIDE RISK
[en] SEMIVARIANCE
[en] VARIANCE
[en] RISK MEASURES
[en] ESTIMATING MODELS
[en] GARCH
[en] RISK
title_short [en] A COMPARATIVE STUDY OF THE FORECAST CAPABILITY OF VOLATILITY MODELS
title_full [en] A COMPARATIVE STUDY OF THE FORECAST CAPABILITY OF VOLATILITY MODELS
title_fullStr [en] A COMPARATIVE STUDY OF THE FORECAST CAPABILITY OF VOLATILITY MODELS
title_full_unstemmed [en] A COMPARATIVE STUDY OF THE FORECAST CAPABILITY OF VOLATILITY MODELS
title_sort [en] A COMPARATIVE STUDY OF THE FORECAST CAPABILITY OF VOLATILITY MODELS
author LUIS ANTONIO GUIMARAES BENEGAS
author_facet LUIS ANTONIO GUIMARAES BENEGAS
author_role author
dc.contributor.none.fl_str_mv TARA KESHAR NANDA BAIDYA
TARA KESHAR NANDA BAIDYA
dc.contributor.author.fl_str_mv LUIS ANTONIO GUIMARAES BENEGAS
dc.subject.por.fl_str_mv [pt] VOLATILIDADE
[pt] MODELOS DE PREVISAO
[pt] DOWNSIDE RISK
[pt] SEMIVARIANCIA
[pt] VARIANCIA
[pt] MEDIDAS DE RISCO
[pt] MODELOS DE ESTIMACAO
[pt] GARCH
[pt] RISCO
[en] VOLATILITY MODELS
[en] FORECASTING MODELS
[en] DOWNSIDE RISK
[en] SEMIVARIANCE
[en] VARIANCE
[en] RISK MEASURES
[en] ESTIMATING MODELS
[en] GARCH
[en] RISK
topic [pt] VOLATILIDADE
[pt] MODELOS DE PREVISAO
[pt] DOWNSIDE RISK
[pt] SEMIVARIANCIA
[pt] VARIANCIA
[pt] MEDIDAS DE RISCO
[pt] MODELOS DE ESTIMACAO
[pt] GARCH
[pt] RISCO
[en] VOLATILITY MODELS
[en] FORECASTING MODELS
[en] DOWNSIDE RISK
[en] SEMIVARIANCE
[en] VARIANCE
[en] RISK MEASURES
[en] ESTIMATING MODELS
[en] GARCH
[en] RISK
description [pt] O conceito de risco é definido como a distribuição de resultados inesperados devido a alterações nos valores das variáveis que descrevem o mercado. Entretanto, o risco não é uma variável observável e sua quantificação depende do modelo empregado para avaliá-lo. Portanto, o uso de diferentes modelos pode levar a previsões de risco significativamente diferentes.O objetivo principal desta dissertação é realizar um estudo comparativo dos modelos mais amplamente utilizados (medição de variância amostral nos últimos k períodos, modelos de amortecimento exponencial e o GARCH(1,1) de Bollerslev) quanto à capacidade preditiva da volatilidade.Esta dissertação compara os modelos de estimação de volatilidade citados acima quanto à sua capacidade preditiva para carteiras compostas por um conjunto de ações negociadas no mercado brasileiro. As previsões de volatilidade desses modelos serão comparadas com a volatilidade real fora da amostra. Como a volatilidade real não é uma variável observável, usou-se o mesmo procedimento adotado pelo RiskMetrics para o cálculo do fator de decaimento ótimo: assumiu-se a premissa que o retorno médio de cada uma das carteiras de ações estudadas é igual a zero e,como conseqüência disso, a previsão um passo à frente da variância do retorno realizada na data t é igual ao valor esperado do quadrado do retorno na data t.O objetivo final é concluir, por meio de técnicas de backtesting, qual dos modelos de previsão de volatilidade apresentou melhor performance quanto aos critérios de comparação vis-à-vis ao esforço computacional necessário. Dessa forma, pretende-se avaliar qual desses modelos oferece a melhor relação custo-benefício para o mercado acionário brasileiro.
publishDate 2002
dc.date.none.fl_str_mv 2002-01-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2213&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2213&idi=2
http://doi.org/10.17771/PUCRio.acad.2213
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2213&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2213&idi=2
http://doi.org/10.17771/PUCRio.acad.2213
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1856395877987385344