EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE CLASSIFIERS
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , , |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
|
Programa de Pós-Graduação: |
PPG EM ENGENHARIA ELÉTRICA
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53517@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53517@2 |
Resumo: | A inteligência artificial tem gerado resultados promissores na área médica, especialmente na última década. Contudo, os modelos de melhor desempenho apresentam opacidade em relação ao seu funcionamento interno. Nesta tese, são apresentadas novas metodologias e abordagens para o desenvolvimento de classificadores explicáveis de imagens médicas. Dois principais métodos, Squaregrid e EvEx, foram desenvolvidos. O primeiro consiste em uma geração mais grosseira, porém rápida, de heatmaps explicativos via segmentações em grades quadrados, enquanto o segundo baseia-se em otimização multi-objetivo, baseada em computação evolucionária, visando ao ajuste fino de parâmetros de segmentação. Notavelmente, ambas as técnicas são agnósticas ao modelo, o que facilita sua utilização para qualquer tipo de classificador de imagens. O potencial destas abordagens foi avaliado em três estudos de caso de classificações médicas: metástases em linfonodos, malária e COVID-19. Para alguns destes casos foram analisados modelos de classificação existentes, publicamente disponíveis. Por outro lado, em outros estudos de caso, novos modelos tiveram que ser treinados. No caso do estudo de COVID-19, a ResNet50 treinada levou a F-scores acima de 0,9 para o conjunto de teste de uma competição para classificação de coronavirus, levando ao terceiro lugar geral. Adicionalmente, técnicas de inteligência artificial já existentes como LIME e GradCAM, bem como Vanilla, Smooth e Integrated Gradients também foram usadas para gerar heatmaps e possibilitar comparações. Os resultados aqui descritos ajudaram a demonstrar e preencher parcialmente lacunas associadas à integração das áreas de inteligência artificial explicável e medicina. Eles também ajudaram a demonstrar que as diferentes abordagens de inteligência artificial explicável podem gerar heatmaps que focam em características diferentes da imagem. Isso por sua vez demonstra a importância de combinar abordagens para criar um panorama mais completo sobre os modelos classificadores, bem como extrair informações sobre o que estes aprendem. |
id |
PUC_RIO-1_b418b877dbfb26b975320106989d4b49 |
---|---|
oai_identifier_str |
oai:MAXWELL.puc-rio.br:53517 |
network_acronym_str |
PUC_RIO-1 |
network_name_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository_id_str |
|
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisEXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE CLASSIFIERS INTELIGÊNCIA ARTIFICIAL EXPLICÁVEL PARA CLASSIFICADORES DE IMAGENS MÉDICAS 2021-03-30EDUARDO COSTA DA SILVA10157357708lattes.cnpq.br/3248166666175748EDUARDO COSTA DA SILVA10157357708lattes.cnpq.br/3248166666175748MARLEY MARIA BERNARDES REBUZZI VELLASCO75758385700lattes.cnpq.br/8265116967095452MARLEY MARIA BERNARDES REBUZZI VELLASCOWOUTER CAARLSKARLA TEREZA FIGUEIREDO LEITECARLOS ROBERTO HALL BARBOSAEDUARDO COSTA DA SILVA14073505793lattes.cnpq.br/5144373676823098IAM PALATNIK DE SOUSAPONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIROPPG EM ENGENHARIA ELÉTRICAPUC-RioBRA inteligência artificial tem gerado resultados promissores na área médica, especialmente na última década. Contudo, os modelos de melhor desempenho apresentam opacidade em relação ao seu funcionamento interno. Nesta tese, são apresentadas novas metodologias e abordagens para o desenvolvimento de classificadores explicáveis de imagens médicas. Dois principais métodos, Squaregrid e EvEx, foram desenvolvidos. O primeiro consiste em uma geração mais grosseira, porém rápida, de heatmaps explicativos via segmentações em grades quadrados, enquanto o segundo baseia-se em otimização multi-objetivo, baseada em computação evolucionária, visando ao ajuste fino de parâmetros de segmentação. Notavelmente, ambas as técnicas são agnósticas ao modelo, o que facilita sua utilização para qualquer tipo de classificador de imagens. O potencial destas abordagens foi avaliado em três estudos de caso de classificações médicas: metástases em linfonodos, malária e COVID-19. Para alguns destes casos foram analisados modelos de classificação existentes, publicamente disponíveis. Por outro lado, em outros estudos de caso, novos modelos tiveram que ser treinados. No caso do estudo de COVID-19, a ResNet50 treinada levou a F-scores acima de 0,9 para o conjunto de teste de uma competição para classificação de coronavirus, levando ao terceiro lugar geral. Adicionalmente, técnicas de inteligência artificial já existentes como LIME e GradCAM, bem como Vanilla, Smooth e Integrated Gradients também foram usadas para gerar heatmaps e possibilitar comparações. Os resultados aqui descritos ajudaram a demonstrar e preencher parcialmente lacunas associadas à integração das áreas de inteligência artificial explicável e medicina. Eles também ajudaram a demonstrar que as diferentes abordagens de inteligência artificial explicável podem gerar heatmaps que focam em características diferentes da imagem. Isso por sua vez demonstra a importância de combinar abordagens para criar um panorama mais completo sobre os modelos classificadores, bem como extrair informações sobre o que estes aprendem.Artificial Intelligence has generated promissing results for the medical area, especially on the last decade. However, the best performing models present opacity when it comes to their internal working. In this thesis, methodologies and approaches are presented for the develpoment of explainable classifiers of medical images. Two main methods, Squaregrid and EvEx, were developed. The first consistts in a rough, but fast, generation of heatmaps via segmentations in square grids, and the second in genetic multi objective optimizations aiming at the fine-tuning of segmentation parameters. Notably, both techniques are agnostic to the model,which facilitates their utilization for any kind of image classifier. The potential of these approaches was demonstrated in three case studies of medical classifications: lymph node mestastases, malária and COVID-19. In some of these cases, already existing classifier models were analyzed, while in some others new models were trained. For the COVID-19 study, the trained ResNet50 provided F-scores above 0.9 in a test set from a coronavirus classification competition, resulting in the third place overall. Additionally, already existing explainable artificial intelligence techniques, such as LIME and GradCAM, as well as Vanilla, Smooth and Integrated Gradients, were also used to generate heatmaps and enable comparisons. The results here described help to demonstrate and improve the gaps in integrating the areas of explainable artificial intelligence and medicine. They also aided in demonstrating that the different types of approaches in explainable artificial intelligence can generate heatmaps that focus on different characteristics of the image. This shows the importance of combining approaches to create a more complete overview of classifier models, as well as extracting informations about what they learned from data.PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIROCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIORCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOPROGRAMA DE EXCELENCIA ACADEMICAhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53517@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53517@2porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2023-06-26T10:10:55ZRepositório InstitucionalPRI |
dc.title.en.fl_str_mv |
EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE CLASSIFIERS |
dc.title.alternative.pt.fl_str_mv |
INTELIGÊNCIA ARTIFICIAL EXPLICÁVEL PARA CLASSIFICADORES DE IMAGENS MÉDICAS |
title |
EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE CLASSIFIERS |
spellingShingle |
EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE CLASSIFIERS IAM PALATNIK DE SOUSA |
title_short |
EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE CLASSIFIERS |
title_full |
EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE CLASSIFIERS |
title_fullStr |
EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE CLASSIFIERS |
title_full_unstemmed |
EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE CLASSIFIERS |
title_sort |
EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE CLASSIFIERS |
author |
IAM PALATNIK DE SOUSA |
author_facet |
IAM PALATNIK DE SOUSA |
author_role |
author |
dc.contributor.advisor2ID.none.fl_str_mv |
10157357708 |
dc.contributor.advisor1.fl_str_mv |
EDUARDO COSTA DA SILVA |
dc.contributor.advisor1ID.fl_str_mv |
10157357708 |
dc.contributor.advisor1Lattes.fl_str_mv |
lattes.cnpq.br/3248166666175748 |
dc.contributor.advisor2.fl_str_mv |
EDUARDO COSTA DA SILVA |
dc.contributor.advisor2Lattes.fl_str_mv |
lattes.cnpq.br/3248166666175748 |
dc.contributor.advisor-co1.fl_str_mv |
MARLEY MARIA BERNARDES REBUZZI VELLASCO |
dc.contributor.advisor-co1ID.fl_str_mv |
75758385700 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
lattes.cnpq.br/8265116967095452 |
dc.contributor.referee1.fl_str_mv |
MARLEY MARIA BERNARDES REBUZZI VELLASCO |
dc.contributor.referee2.fl_str_mv |
WOUTER CAARLS |
dc.contributor.referee3.fl_str_mv |
KARLA TEREZA FIGUEIREDO LEITE |
dc.contributor.referee4.fl_str_mv |
CARLOS ROBERTO HALL BARBOSA |
dc.contributor.referee5.fl_str_mv |
EDUARDO COSTA DA SILVA |
dc.contributor.authorID.fl_str_mv |
14073505793 |
dc.contributor.authorLattes.fl_str_mv |
lattes.cnpq.br/5144373676823098 |
dc.contributor.author.fl_str_mv |
IAM PALATNIK DE SOUSA |
contributor_str_mv |
EDUARDO COSTA DA SILVA EDUARDO COSTA DA SILVA MARLEY MARIA BERNARDES REBUZZI VELLASCO MARLEY MARIA BERNARDES REBUZZI VELLASCO WOUTER CAARLS KARLA TEREZA FIGUEIREDO LEITE CARLOS ROBERTO HALL BARBOSA EDUARDO COSTA DA SILVA |
description |
A inteligência artificial tem gerado resultados promissores na área médica, especialmente na última década. Contudo, os modelos de melhor desempenho apresentam opacidade em relação ao seu funcionamento interno. Nesta tese, são apresentadas novas metodologias e abordagens para o desenvolvimento de classificadores explicáveis de imagens médicas. Dois principais métodos, Squaregrid e EvEx, foram desenvolvidos. O primeiro consiste em uma geração mais grosseira, porém rápida, de heatmaps explicativos via segmentações em grades quadrados, enquanto o segundo baseia-se em otimização multi-objetivo, baseada em computação evolucionária, visando ao ajuste fino de parâmetros de segmentação. Notavelmente, ambas as técnicas são agnósticas ao modelo, o que facilita sua utilização para qualquer tipo de classificador de imagens. O potencial destas abordagens foi avaliado em três estudos de caso de classificações médicas: metástases em linfonodos, malária e COVID-19. Para alguns destes casos foram analisados modelos de classificação existentes, publicamente disponíveis. Por outro lado, em outros estudos de caso, novos modelos tiveram que ser treinados. No caso do estudo de COVID-19, a ResNet50 treinada levou a F-scores acima de 0,9 para o conjunto de teste de uma competição para classificação de coronavirus, levando ao terceiro lugar geral. Adicionalmente, técnicas de inteligência artificial já existentes como LIME e GradCAM, bem como Vanilla, Smooth e Integrated Gradients também foram usadas para gerar heatmaps e possibilitar comparações. Os resultados aqui descritos ajudaram a demonstrar e preencher parcialmente lacunas associadas à integração das áreas de inteligência artificial explicável e medicina. Eles também ajudaram a demonstrar que as diferentes abordagens de inteligência artificial explicável podem gerar heatmaps que focam em características diferentes da imagem. Isso por sua vez demonstra a importância de combinar abordagens para criar um panorama mais completo sobre os modelos classificadores, bem como extrair informações sobre o que estes aprendem. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-03-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53517@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53517@2 |
url |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53517@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53517@2 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO |
dc.publisher.program.fl_str_mv |
PPG EM ENGENHARIA ELÉTRICA |
dc.publisher.initials.fl_str_mv |
PUC-Rio |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell) instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) instacron:PUC_RIO |
instname_str |
Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
instacron_str |
PUC_RIO |
institution |
PUC_RIO |
reponame_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
collection |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1776626355777044480 |