[pt] APLICAÇÃO DE TÉCNICAS DE MACHINE LEARNING E DATA DRIVEN EM POÇOS INTELIGENTES DE PETRÓLEO

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: TAISA DORNELAS ABBAS CALVETTE
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47237&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47237&idi=2
http://doi.org/10.17771/PUCRio.acad.47237
Resumo: [pt] Realizar uma estimativa confiável na produção de petróleo é um dos grandes desafios na indústria de óleo e gás e é uma parte crítica no planejamento e na tomada de decisão das petrolíferas. Neste contexto, este trabalho visa explorar as vantagens e desempenho dos algoritmos de machine learning para realizar a previsão de produção de petróleo, gás e água a partir das informações de controle de poços inteligentes e usando a metodologia de data driven. Para tanto, foram usadas duas bases de dados com séries históricas de produção de petróleo, gás e água. A primeira base foi gerada sinteticamente (através de simulação de reservatórios) e consiste na produção média mensal e configuração de 3 válvulas de um poço injetor, ao longo de um período de 10 anos. A segunda base usa dados reais de produção (observados) fornecidos pelo estado da Dakota do Sul nos Estados Unidos. Esta base consiste na média diária de produção e o estado geral (ativo ou não produzindo) de diversos poços produtores de petróleo no período compreendido de 1950 a 2018. Com o intuito de testar a metodologia, foram realizados diversos experimentos combinando o treinamento da proxy com algoritmos de Redes Neurais Artificiais (Multilayer Perceptron) e deep learning com redes neurais recorrentes (redes neurais recorrentes simples, long short-term memory, Gated Recurrent Units), chamados de smart proxy e deep smart proxy respectivamente. Os resultados encontrados mostraram que o modelo deep smart proxy se mostrou bastante promissor. Utilizando uma rede Gated Recurrent Units com camadas bidirecionais (GRUB), foi possível obter uma redução no erro RMSE de 66 por cento e no erro MAE de 79 por cento quando comparados aos modelos smart proxy com Redes Neurais Artificiais. Verificou-se que nos modelos deep smart proxy, o uso de camadas bidirecionais gerou uma significativa melhora na previsão e redução do erro, tanto nos testes que utilizaram dados de produção simulados (caso sintético) quanto nos testes que utilizaram dados de produção observados (caso real), proporcionando uma variação de até 75 por cento no RMSE e 85 por cento no MAE. O erro RMSE normalizado na rede GRUB foi de 0,53 por cento nos dados observados e 0,65 por cento nos dados sintéticos. Os modelos de deep smart proxy obtiveram desempenhos muito semelhantes, principalmente ao comparar o desempenho das redes do tipo LSTMB e GRUB. Estas redes foram aplicadas em ambos os casos sintético e real de produção e superaram, em todos os casos, os resultados obtidos com o modelo de smart proxy com MLP.
id PUC_RIO-1_f55843ffc65eb97691f865967f82b305
oai_identifier_str oai:MAXWELL.puc-rio.br:47237
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str
spelling [pt] APLICAÇÃO DE TÉCNICAS DE MACHINE LEARNING E DATA DRIVEN EM POÇOS INTELIGENTES DE PETRÓLEO [en] APPLICATION OF MACHINE LEARNING AND DATA DRIVEN TECHNIQUES TO SMART OIL WELLS [pt] PRODUCAO DE PETROLEO[pt] DEEP SMART PROXY[pt] SMART PROXY[pt] PROXY[pt] MACHINE LEARNING[pt] POCOS INTELIGENTES[en] OIL PRODUCTION[en] DEEP SMART PROXY[en] SMART PROXY[en] PROXY[en] MACHINE LEARNING[en] SMART WELLS[pt] Realizar uma estimativa confiável na produção de petróleo é um dos grandes desafios na indústria de óleo e gás e é uma parte crítica no planejamento e na tomada de decisão das petrolíferas. Neste contexto, este trabalho visa explorar as vantagens e desempenho dos algoritmos de machine learning para realizar a previsão de produção de petróleo, gás e água a partir das informações de controle de poços inteligentes e usando a metodologia de data driven. Para tanto, foram usadas duas bases de dados com séries históricas de produção de petróleo, gás e água. A primeira base foi gerada sinteticamente (através de simulação de reservatórios) e consiste na produção média mensal e configuração de 3 válvulas de um poço injetor, ao longo de um período de 10 anos. A segunda base usa dados reais de produção (observados) fornecidos pelo estado da Dakota do Sul nos Estados Unidos. Esta base consiste na média diária de produção e o estado geral (ativo ou não produzindo) de diversos poços produtores de petróleo no período compreendido de 1950 a 2018. Com o intuito de testar a metodologia, foram realizados diversos experimentos combinando o treinamento da proxy com algoritmos de Redes Neurais Artificiais (Multilayer Perceptron) e deep learning com redes neurais recorrentes (redes neurais recorrentes simples, long short-term memory, Gated Recurrent Units), chamados de smart proxy e deep smart proxy respectivamente. Os resultados encontrados mostraram que o modelo deep smart proxy se mostrou bastante promissor. Utilizando uma rede Gated Recurrent Units com camadas bidirecionais (GRUB), foi possível obter uma redução no erro RMSE de 66 por cento e no erro MAE de 79 por cento quando comparados aos modelos smart proxy com Redes Neurais Artificiais. Verificou-se que nos modelos deep smart proxy, o uso de camadas bidirecionais gerou uma significativa melhora na previsão e redução do erro, tanto nos testes que utilizaram dados de produção simulados (caso sintético) quanto nos testes que utilizaram dados de produção observados (caso real), proporcionando uma variação de até 75 por cento no RMSE e 85 por cento no MAE. O erro RMSE normalizado na rede GRUB foi de 0,53 por cento nos dados observados e 0,65 por cento nos dados sintéticos. Os modelos de deep smart proxy obtiveram desempenhos muito semelhantes, principalmente ao comparar o desempenho das redes do tipo LSTMB e GRUB. Estas redes foram aplicadas em ambos os casos sintético e real de produção e superaram, em todos os casos, os resultados obtidos com o modelo de smart proxy com MLP.[en] A reliable forecast for oil production represents one of the biggest challenges in the oil and gas industry and contributes to the planning and decision making of oil companies. Because of that, this work uses intelligent well valves settings and data driven methodology to explore the advantages and the performance of machine learning algorithms in the forecasting of oil, gas and water production. In order to do so, two database containing historical data series of oil, gas and water production were used. The first was generated synthetically (through reservoir simulation) and consisted of the average monthly production of an injection well over a period of 10 years, as well as the configuration of 3 of its valves. The second database used the production data provided by the state of South Dakota, located in the United States, and consisted of the daily production average and the overall well status (active or not producing) from several oil producing wells in a period ranging from 1950 to 2018. In order to test the methodology, several experiments were performed combining proxy with Artificial Neural Network Algorithms (Multilayer Perceptron) and deep learning recurrent neural networks (Simple Recurrent Neural Networks, long short-term memory, Gated Recurrent Units), which were named smart proxy and deep smart proxy, respectively. The results showed that the deep smart proxy model was very promising. Using the Gated Recurrent Units network with bi-directional layers (GRUB), a reduction of 66 percent in the RMSE error and 79 percent in the MAE error was obtained when compared to smart proxy models with Artificial Neural Networks. The deep smart proxy models with bidirectional layers generated a significant improvement in prediction and error reduction in both databases tests ( i.e. tests with simulated production data (synthetic case) and with the observed production data (real case), resulting in a variation of up to 75 percent in RMSE and 85 percent in MAE). The normalized RMSE error in the GRUB network was of 0.53 percent in the observed database and 0.65 percent in the synthetic database. It is important to notice that the Deep smart proxy models achieved very similar performances when comparing the LSTMB and GRUB network in both databases (synthetic and real production), surpassing in all cases the results obtained with the MLP smart proxy model.MAXWELLMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOMARCO AURELIO CAVALCANTI PACHECOTAISA DORNELAS ABBAS CALVETTE2020-03-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47237&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47237&idi=2http://doi.org/10.17771/PUCRio.acad.47237porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2022-08-02T00:00:00Zoai:MAXWELL.puc-rio.br:47237Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342022-08-02T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [pt] APLICAÇÃO DE TÉCNICAS DE MACHINE LEARNING E DATA DRIVEN EM POÇOS INTELIGENTES DE PETRÓLEO
[en] APPLICATION OF MACHINE LEARNING AND DATA DRIVEN TECHNIQUES TO SMART OIL WELLS
title [pt] APLICAÇÃO DE TÉCNICAS DE MACHINE LEARNING E DATA DRIVEN EM POÇOS INTELIGENTES DE PETRÓLEO
spellingShingle [pt] APLICAÇÃO DE TÉCNICAS DE MACHINE LEARNING E DATA DRIVEN EM POÇOS INTELIGENTES DE PETRÓLEO
TAISA DORNELAS ABBAS CALVETTE
[pt] PRODUCAO DE PETROLEO
[pt] DEEP SMART PROXY
[pt] SMART PROXY
[pt] PROXY
[pt] MACHINE LEARNING
[pt] POCOS INTELIGENTES
[en] OIL PRODUCTION
[en] DEEP SMART PROXY
[en] SMART PROXY
[en] PROXY
[en] MACHINE LEARNING
[en] SMART WELLS
title_short [pt] APLICAÇÃO DE TÉCNICAS DE MACHINE LEARNING E DATA DRIVEN EM POÇOS INTELIGENTES DE PETRÓLEO
title_full [pt] APLICAÇÃO DE TÉCNICAS DE MACHINE LEARNING E DATA DRIVEN EM POÇOS INTELIGENTES DE PETRÓLEO
title_fullStr [pt] APLICAÇÃO DE TÉCNICAS DE MACHINE LEARNING E DATA DRIVEN EM POÇOS INTELIGENTES DE PETRÓLEO
title_full_unstemmed [pt] APLICAÇÃO DE TÉCNICAS DE MACHINE LEARNING E DATA DRIVEN EM POÇOS INTELIGENTES DE PETRÓLEO
title_sort [pt] APLICAÇÃO DE TÉCNICAS DE MACHINE LEARNING E DATA DRIVEN EM POÇOS INTELIGENTES DE PETRÓLEO
author TAISA DORNELAS ABBAS CALVETTE
author_facet TAISA DORNELAS ABBAS CALVETTE
author_role author
dc.contributor.none.fl_str_mv MARCO AURELIO CAVALCANTI PACHECO
MARCO AURELIO CAVALCANTI PACHECO
MARCO AURELIO CAVALCANTI PACHECO
dc.contributor.author.fl_str_mv TAISA DORNELAS ABBAS CALVETTE
dc.subject.por.fl_str_mv [pt] PRODUCAO DE PETROLEO
[pt] DEEP SMART PROXY
[pt] SMART PROXY
[pt] PROXY
[pt] MACHINE LEARNING
[pt] POCOS INTELIGENTES
[en] OIL PRODUCTION
[en] DEEP SMART PROXY
[en] SMART PROXY
[en] PROXY
[en] MACHINE LEARNING
[en] SMART WELLS
topic [pt] PRODUCAO DE PETROLEO
[pt] DEEP SMART PROXY
[pt] SMART PROXY
[pt] PROXY
[pt] MACHINE LEARNING
[pt] POCOS INTELIGENTES
[en] OIL PRODUCTION
[en] DEEP SMART PROXY
[en] SMART PROXY
[en] PROXY
[en] MACHINE LEARNING
[en] SMART WELLS
description [pt] Realizar uma estimativa confiável na produção de petróleo é um dos grandes desafios na indústria de óleo e gás e é uma parte crítica no planejamento e na tomada de decisão das petrolíferas. Neste contexto, este trabalho visa explorar as vantagens e desempenho dos algoritmos de machine learning para realizar a previsão de produção de petróleo, gás e água a partir das informações de controle de poços inteligentes e usando a metodologia de data driven. Para tanto, foram usadas duas bases de dados com séries históricas de produção de petróleo, gás e água. A primeira base foi gerada sinteticamente (através de simulação de reservatórios) e consiste na produção média mensal e configuração de 3 válvulas de um poço injetor, ao longo de um período de 10 anos. A segunda base usa dados reais de produção (observados) fornecidos pelo estado da Dakota do Sul nos Estados Unidos. Esta base consiste na média diária de produção e o estado geral (ativo ou não produzindo) de diversos poços produtores de petróleo no período compreendido de 1950 a 2018. Com o intuito de testar a metodologia, foram realizados diversos experimentos combinando o treinamento da proxy com algoritmos de Redes Neurais Artificiais (Multilayer Perceptron) e deep learning com redes neurais recorrentes (redes neurais recorrentes simples, long short-term memory, Gated Recurrent Units), chamados de smart proxy e deep smart proxy respectivamente. Os resultados encontrados mostraram que o modelo deep smart proxy se mostrou bastante promissor. Utilizando uma rede Gated Recurrent Units com camadas bidirecionais (GRUB), foi possível obter uma redução no erro RMSE de 66 por cento e no erro MAE de 79 por cento quando comparados aos modelos smart proxy com Redes Neurais Artificiais. Verificou-se que nos modelos deep smart proxy, o uso de camadas bidirecionais gerou uma significativa melhora na previsão e redução do erro, tanto nos testes que utilizaram dados de produção simulados (caso sintético) quanto nos testes que utilizaram dados de produção observados (caso real), proporcionando uma variação de até 75 por cento no RMSE e 85 por cento no MAE. O erro RMSE normalizado na rede GRUB foi de 0,53 por cento nos dados observados e 0,65 por cento nos dados sintéticos. Os modelos de deep smart proxy obtiveram desempenhos muito semelhantes, principalmente ao comparar o desempenho das redes do tipo LSTMB e GRUB. Estas redes foram aplicadas em ambos os casos sintético e real de produção e superaram, em todos os casos, os resultados obtidos com o modelo de smart proxy com MLP.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47237&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47237&idi=2
http://doi.org/10.17771/PUCRio.acad.47237
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47237&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47237&idi=2
http://doi.org/10.17771/PUCRio.acad.47237
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1856395944415723520