Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Pontifícia Universidade Católica de São Paulo
|
| Programa de Pós-Graduação: |
Programa de Estudos Pós-Graduados em Educação Matemática
|
| Departamento: |
Faculdade de Ciências Exatas e Tecnologia
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://tede2.pucsp.br/handle/handle/23731 |
Resumo: | This research aims to identify which contributions can emerge from the study of the three dimensions of the didactic problem and contribute to the construction of a Reference Didactic Model associated with the development of Study and Research Activities aimed at teaching and learning conics in basic education. We used as theoretical reference the Anthropological Theory of didactics and adopted the methodology of documentary research. According to this theory, we made a study of these three dimensions in which, in the epistemological dimension we identified the knowledge and the reasons of being of conicals, throughout history, inserted in the synthetic geometry, analytical, linear, projective and taxi and we built an Epistemological Model of Reference involving each of these geometries in which we explain the praxeologies involved. In the economic-institutional dimension, we identified the dominant model for the teaching of conics in primary school, based on a historical study, in Brazilian teaching, through the curricula that followed and textbooks adopted in different periods. In the ecological dimension we built a food chain, in the sense of TAD, explaining which mathematical contents allow feeding the teaching of conics in basic school and what objects can be fed by them, even rescuing contents that have been forgotten over time and that allow a series of important articulations to understand these objects. As a consequence, we suggest changes in the school curriculum so that the teaching of conics is distributed throughout basic education and not to focus only on the 3rd year of high school. In addition, we built a Didactic Reference Model in which we develop Study and Research Activities for the 9th year of elementar school, presenting different ways to build a representation of conics in which the student can be impelled to conjecture, investigate and reflect, while using several mathematical properties. For the 1st year of high school we elaborated an activity about parabola that involves the transport of some elements of synthetic geometry to a cartesian reference, relating analytical geometry with taxi geometry, evidencing the difference between its metrics and elaborated another activity related to hyperbola to understand the location of a ship through electromagnetic waves in the LORAN-C system, relating synthetic geometry to analytical geometry. In the 2nd year of high school we developed an activity that relates the synthetic and analytical geometries in the study of parables and hyperbole in the construction of a reflector telescope and another, to treat the ellipse, in these same geometries, related to the celestial orbit of the planet earth, considering the positions of the aphelium and perihelium. In the 3rd year of high school we built an activity to study the ellipse through the coordinates of five points of a celestial orbit in which we relate the linear and analytical geometries and another activity, involving the synthetic, analytical and projective geometries to determine which conical represents the projected shadow of a lamp on a wall |
| id |
PUC_SP-1_22c4fa2f1fc660abb02f896e748470a1 |
|---|---|
| oai_identifier_str |
oai:repositorio.pucsp.br:handle/23731 |
| network_acronym_str |
PUC_SP-1 |
| network_name_str |
Repositório Institucional da PUC_SP |
| repository_id_str |
|
| spelling |
Silva, Maria José Ferreira daSiqueira, Carlos Alberto Fernandes de2021-09-24T11:49:39Z2021-08-04Siqueira, Carlos Alberto Fernandes de. Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica. 2021. 355 f. Tese (Doutorado em Educação Matemática) - Programa de Estudos Pós-Graduados em Educação Matemática, Pontifícia Universidade Católica de São Paulo, São Paulo, 2021.https://tede2.pucsp.br/handle/handle/23731This research aims to identify which contributions can emerge from the study of the three dimensions of the didactic problem and contribute to the construction of a Reference Didactic Model associated with the development of Study and Research Activities aimed at teaching and learning conics in basic education. We used as theoretical reference the Anthropological Theory of didactics and adopted the methodology of documentary research. According to this theory, we made a study of these three dimensions in which, in the epistemological dimension we identified the knowledge and the reasons of being of conicals, throughout history, inserted in the synthetic geometry, analytical, linear, projective and taxi and we built an Epistemological Model of Reference involving each of these geometries in which we explain the praxeologies involved. In the economic-institutional dimension, we identified the dominant model for the teaching of conics in primary school, based on a historical study, in Brazilian teaching, through the curricula that followed and textbooks adopted in different periods. In the ecological dimension we built a food chain, in the sense of TAD, explaining which mathematical contents allow feeding the teaching of conics in basic school and what objects can be fed by them, even rescuing contents that have been forgotten over time and that allow a series of important articulations to understand these objects. As a consequence, we suggest changes in the school curriculum so that the teaching of conics is distributed throughout basic education and not to focus only on the 3rd year of high school. In addition, we built a Didactic Reference Model in which we develop Study and Research Activities for the 9th year of elementar school, presenting different ways to build a representation of conics in which the student can be impelled to conjecture, investigate and reflect, while using several mathematical properties. For the 1st year of high school we elaborated an activity about parabola that involves the transport of some elements of synthetic geometry to a cartesian reference, relating analytical geometry with taxi geometry, evidencing the difference between its metrics and elaborated another activity related to hyperbola to understand the location of a ship through electromagnetic waves in the LORAN-C system, relating synthetic geometry to analytical geometry. In the 2nd year of high school we developed an activity that relates the synthetic and analytical geometries in the study of parables and hyperbole in the construction of a reflector telescope and another, to treat the ellipse, in these same geometries, related to the celestial orbit of the planet earth, considering the positions of the aphelium and perihelium. In the 3rd year of high school we built an activity to study the ellipse through the coordinates of five points of a celestial orbit in which we relate the linear and analytical geometries and another activity, involving the synthetic, analytical and projective geometries to determine which conical represents the projected shadow of a lamp on a wallEsta pesquisa tem por objetivo identificar quais contribuições podem emergir do estudo das três dimensões do problema didático e contribuir para a construção de um Modelo Didático de Referência associado ao desenvolvimento de Atividades de Estudo e Investigação voltadas ao ensino e à aprendizagem das cônicas na escola básica. Utilizamos como referencial teórico a Teoria Antropológica do Didático e adotamos a metodologia de pesquisa documental. De acordo com essa teoria, fizemos um estudo destas três dimensões em que, na dimensão epistemológica identificamos os saberes e as razões de ser das cônicas, ao longo da história, inseridas na geometria sintética, analítica, linear, projetiva e do taxi e construímos um Modelo Epistemológico de Referência envolvendo cada uma dessas geometrias em que explicitamos as praxeologias envolvidas. Na dimensão econômico-institucional identificamos o modelo dominante para o ensino das cônicas na escola básica, a partir de um estudo histórico, no ensino brasileiro, por meio dos currículos que se sucederam e de livros didáticos adotados em diferentes períodos. Na dimensão ecológica construímos uma cadeia alimentar, no sentido da TAD, explicitando quais conteúdos matemáticos permitem alimentar o ensino das cônicas na escola básica e quais objetos podem ser alimentados por elas, resgatando inclusive conteúdos que foram esquecidos ao longo do tempo e que permitem uma série de articulações importantes para compreensão destes objetos. Como consequência, sugerimos alterações no currículo escolar para que se distribua o ensino das cônicas ao longo da educação básica e não o concentre apenas no 3º ano do EM. Além disso, construímos um Modelo Didático de Referência em que desenvolvemos Atividades de Estudo e Investigação para o 9º ano do EF, apresentando diferentes maneiras de construir uma representação de cônicas em que o aluno poderá ser impelido a conjecturar, investigar e refletir, ao mesmo tempo em que utiliza diversas propriedades matemáticas. Para o 1º ano do EM elaboramos uma atividade a respeito de parábola que envolve o transporte de alguns elementos da geometria sintética para um referencial cartesiano, relacionando a geometria analítica com a geometria do taxi, evidenciando a diferença entre suas métricas e elaboramos outra atividade referente a hipérbole para entender a localização de um navio por meio de ondas eletromagnéticas no sistema LORAN-C, relacionando a geometria sintética com a geometria analítica. No 2º ano do EM desenvolvemos uma atividade que relaciona as geometrias sintética e analítica no estudo de parábolas e de hipérboles na construção de um telescópio refletor e outra, para tratar da elipse, nestas mesmas geometrias, relacionada à órbita celeste do planeta terra, considerando as posições do afélio e do periélio. No 3º ano do EM construímos uma atividade para estudar a elipse por meio das coordenadas de cinco pontos de uma órbita celeste em que relacionamos as geometrias linear e analítica e outra atividade, envolvendo as geometrias sintética, analítica e projetiva para determinar qual a cônica representa a sombra projetada de um abajur em uma paredeCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://tede2.pucsp.br/tede/retrieve/54034/Carlos%20Alberto%20Fernandes%20de%20Siqueira.pdf.jpgporPontifícia Universidade Católica de São PauloPrograma de Estudos Pós-Graduados em Educação MatemáticaPUC-SPBrasilFaculdade de Ciências Exatas e TecnologiaCônicasGeometriaMatemática - Estudo e ensinoConicsGeometryMathematics - Study and teachingCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAUm modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básicainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da PUC_SPinstname:Pontifícia Universidade Católica de São Paulo (PUC-SP)instacron:PUC_SPTEXTCarlos Alberto Fernandes de Siqueira.pdf.txtCarlos Alberto Fernandes de Siqueira.pdf.txtExtracted texttext/plain663891https://repositorio.pucsp.br/xmlui/bitstream/handle/23731/4/Carlos%20Alberto%20Fernandes%20de%20Siqueira.pdf.txt407deb035ec0482a12f62ef33e05dc29MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165https://repositorio.pucsp.br/xmlui/bitstream/handle/23731/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALCarlos Alberto Fernandes de Siqueira.pdfCarlos Alberto Fernandes de Siqueira.pdfapplication/pdf6111716https://repositorio.pucsp.br/xmlui/bitstream/handle/23731/2/Carlos%20Alberto%20Fernandes%20de%20Siqueira.pdf2b8ddc0fff022f4eea4eff8a3c28ac6eMD52THUMBNAILCarlos Alberto Fernandes de Siqueira.pdf.jpgCarlos Alberto Fernandes de Siqueira.pdf.jpgGenerated Thumbnailimage/jpeg1943https://repositorio.pucsp.br/xmlui/bitstream/handle/23731/3/Carlos%20Alberto%20Fernandes%20de%20Siqueira.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD53handle/237312022-04-28 11:24:33.284oai:repositorio.pucsp.br:handle/23731Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Repositório Institucionalhttps://sapientia.pucsp.br/https://sapientia.pucsp.br/oai/requestbngkatende@pucsp.br||rapassi@pucsp.bropendoar:2022-04-28T14:24:33Repositório Institucional da PUC_SP - Pontifícia Universidade Católica de São Paulo (PUC-SP)false |
| dc.title.por.fl_str_mv |
Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica |
| title |
Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica |
| spellingShingle |
Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica Siqueira, Carlos Alberto Fernandes de Cônicas Geometria Matemática - Estudo e ensino Conics Geometry Mathematics - Study and teaching CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica |
| title_full |
Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica |
| title_fullStr |
Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica |
| title_full_unstemmed |
Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica |
| title_sort |
Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica |
| author |
Siqueira, Carlos Alberto Fernandes de |
| author_facet |
Siqueira, Carlos Alberto Fernandes de |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Silva, Maria José Ferreira da |
| dc.contributor.author.fl_str_mv |
Siqueira, Carlos Alberto Fernandes de |
| contributor_str_mv |
Silva, Maria José Ferreira da |
| dc.subject.por.fl_str_mv |
Cônicas Geometria Matemática - Estudo e ensino |
| topic |
Cônicas Geometria Matemática - Estudo e ensino Conics Geometry Mathematics - Study and teaching CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| dc.subject.eng.fl_str_mv |
Conics Geometry Mathematics - Study and teaching |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
This research aims to identify which contributions can emerge from the study of the three dimensions of the didactic problem and contribute to the construction of a Reference Didactic Model associated with the development of Study and Research Activities aimed at teaching and learning conics in basic education. We used as theoretical reference the Anthropological Theory of didactics and adopted the methodology of documentary research. According to this theory, we made a study of these three dimensions in which, in the epistemological dimension we identified the knowledge and the reasons of being of conicals, throughout history, inserted in the synthetic geometry, analytical, linear, projective and taxi and we built an Epistemological Model of Reference involving each of these geometries in which we explain the praxeologies involved. In the economic-institutional dimension, we identified the dominant model for the teaching of conics in primary school, based on a historical study, in Brazilian teaching, through the curricula that followed and textbooks adopted in different periods. In the ecological dimension we built a food chain, in the sense of TAD, explaining which mathematical contents allow feeding the teaching of conics in basic school and what objects can be fed by them, even rescuing contents that have been forgotten over time and that allow a series of important articulations to understand these objects. As a consequence, we suggest changes in the school curriculum so that the teaching of conics is distributed throughout basic education and not to focus only on the 3rd year of high school. In addition, we built a Didactic Reference Model in which we develop Study and Research Activities for the 9th year of elementar school, presenting different ways to build a representation of conics in which the student can be impelled to conjecture, investigate and reflect, while using several mathematical properties. For the 1st year of high school we elaborated an activity about parabola that involves the transport of some elements of synthetic geometry to a cartesian reference, relating analytical geometry with taxi geometry, evidencing the difference between its metrics and elaborated another activity related to hyperbola to understand the location of a ship through electromagnetic waves in the LORAN-C system, relating synthetic geometry to analytical geometry. In the 2nd year of high school we developed an activity that relates the synthetic and analytical geometries in the study of parables and hyperbole in the construction of a reflector telescope and another, to treat the ellipse, in these same geometries, related to the celestial orbit of the planet earth, considering the positions of the aphelium and perihelium. In the 3rd year of high school we built an activity to study the ellipse through the coordinates of five points of a celestial orbit in which we relate the linear and analytical geometries and another activity, involving the synthetic, analytical and projective geometries to determine which conical represents the projected shadow of a lamp on a wall |
| publishDate |
2021 |
| dc.date.accessioned.fl_str_mv |
2021-09-24T11:49:39Z |
| dc.date.issued.fl_str_mv |
2021-08-04 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
Siqueira, Carlos Alberto Fernandes de. Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica. 2021. 355 f. Tese (Doutorado em Educação Matemática) - Programa de Estudos Pós-Graduados em Educação Matemática, Pontifícia Universidade Católica de São Paulo, São Paulo, 2021. |
| dc.identifier.uri.fl_str_mv |
https://tede2.pucsp.br/handle/handle/23731 |
| identifier_str_mv |
Siqueira, Carlos Alberto Fernandes de. Um modelo didático de referência baseado em atividades de estudo e investigação para o ensino de cônicas na escola básica. 2021. 355 f. Tese (Doutorado em Educação Matemática) - Programa de Estudos Pós-Graduados em Educação Matemática, Pontifícia Universidade Católica de São Paulo, São Paulo, 2021. |
| url |
https://tede2.pucsp.br/handle/handle/23731 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica de São Paulo |
| dc.publisher.program.fl_str_mv |
Programa de Estudos Pós-Graduados em Educação Matemática |
| dc.publisher.initials.fl_str_mv |
PUC-SP |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Faculdade de Ciências Exatas e Tecnologia |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica de São Paulo |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da PUC_SP instname:Pontifícia Universidade Católica de São Paulo (PUC-SP) instacron:PUC_SP |
| instname_str |
Pontifícia Universidade Católica de São Paulo (PUC-SP) |
| instacron_str |
PUC_SP |
| institution |
PUC_SP |
| reponame_str |
Repositório Institucional da PUC_SP |
| collection |
Repositório Institucional da PUC_SP |
| bitstream.url.fl_str_mv |
https://repositorio.pucsp.br/xmlui/bitstream/handle/23731/4/Carlos%20Alberto%20Fernandes%20de%20Siqueira.pdf.txt https://repositorio.pucsp.br/xmlui/bitstream/handle/23731/1/license.txt https://repositorio.pucsp.br/xmlui/bitstream/handle/23731/2/Carlos%20Alberto%20Fernandes%20de%20Siqueira.pdf https://repositorio.pucsp.br/xmlui/bitstream/handle/23731/3/Carlos%20Alberto%20Fernandes%20de%20Siqueira.pdf.jpg |
| bitstream.checksum.fl_str_mv |
407deb035ec0482a12f62ef33e05dc29 bd3efa91386c1718a7f26a329fdcb468 2b8ddc0fff022f4eea4eff8a3c28ac6e cc73c4c239a4c332d642ba1e7c7a9fb2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da PUC_SP - Pontifícia Universidade Católica de São Paulo (PUC-SP) |
| repository.mail.fl_str_mv |
bngkatende@pucsp.br||rapassi@pucsp.br |
| _version_ |
1840370328872681472 |