Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Pontifícia Universidade Católica de São Paulo
|
| Programa de Pós-Graduação: |
Programa de Estudos Pós-Graduados em Educação Matemática
|
| Departamento: |
Faculdade de Ciências Exatas e Tecnologia
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://tede2.pucsp.br/handle/handle/19156 |
Resumo: | This thesis has as main theme the learning of the derivative. The research was motivated by the questioning: What are the different thoughts related to the learning process of a concept? Thus, the theory of the Three Worlds of Mathematics proposed by David Tall was used as basis, what brought elements that allow us to understand how humans learn to think mathematically. From this framework, was developed nine thought flows involved in learning a mathematical concept. A study of the derivative is also held to compose the material analyzed in this research and, from the perspective of thought flows, specific flows that allow us to observe learning elements of derivative were highlighted, as in the embodied world, which presents sensitive and noticeable aspects, when it is treated as the tangent line slope, place of righteousness instant variation curve or rate. In the symbolic world, it’s possible to observe routines and tacit processes to this concept, which are run in order to create their own symbols; and in the formal world, it was observed the axiomatic structure that a derivative can be designed. This thesis follows the exploratory theoretical proposal, because it is a research that relies only on documents to build its own concepts and arguments, using the accuracy and logical consistency to produce a base material for further research. Another result observed, which resulted in a breakthrough among the theories discussed, refers to noticeable feature of the derivative, belonging to the embodied world as this unlinked is procedural characteristics, providing thus provide a reference basis for further investigations in the process teaching and learning derivative |
| id |
PUC_SP-1_ea906c6f6b5ad0feeda58b4313f11813 |
|---|---|
| oai_identifier_str |
oai:repositorio.pucsp.br:handle/19156 |
| network_acronym_str |
PUC_SP-1 |
| network_name_str |
Repositório Institucional da PUC_SP |
| repository_id_str |
|
| spelling |
Igliori, Sonia Barbosa Camargohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771962P9Leme, Jayme do Carmo Macedo2016-10-04T17:17:29Z2016-06-08Leme, Jayme do Carmo Macedo. Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento. 2016. 117 f. Tese (Doutorado em Educação Matemática) - Programa de Estudos Pós-Graduados em Educação Matemática, Pontifícia Universidade Católica de São Paulo, São Paulo, 2016.https://tede2.pucsp.br/handle/handle/19156This thesis has as main theme the learning of the derivative. The research was motivated by the questioning: What are the different thoughts related to the learning process of a concept? Thus, the theory of the Three Worlds of Mathematics proposed by David Tall was used as basis, what brought elements that allow us to understand how humans learn to think mathematically. From this framework, was developed nine thought flows involved in learning a mathematical concept. A study of the derivative is also held to compose the material analyzed in this research and, from the perspective of thought flows, specific flows that allow us to observe learning elements of derivative were highlighted, as in the embodied world, which presents sensitive and noticeable aspects, when it is treated as the tangent line slope, place of righteousness instant variation curve or rate. In the symbolic world, it’s possible to observe routines and tacit processes to this concept, which are run in order to create their own symbols; and in the formal world, it was observed the axiomatic structure that a derivative can be designed. This thesis follows the exploratory theoretical proposal, because it is a research that relies only on documents to build its own concepts and arguments, using the accuracy and logical consistency to produce a base material for further research. Another result observed, which resulted in a breakthrough among the theories discussed, refers to noticeable feature of the derivative, belonging to the embodied world as this unlinked is procedural characteristics, providing thus provide a reference basis for further investigations in the process teaching and learning derivativeA presente tese tem como temática a aprendizagem da derivada. A pesquisa foi motivada pelo problema: Quais são os diferentes pensamentos relacionados ao processo de aprendizagem de um conceito? Assim, buscou-se na teoria dos Três Mundos da Matemática, proposta por David Tall, elementos que permitem compreender, como os humanos aprendem a pensar matematicamente. A partir desse referencial, foram desenvolvidos nove fluxos de pensamento envolvidos na aprendizagem de um conceito matemático. Também foi realizado um estudo da derivada para compor o material de análise desta pesquisa e, na perspectiva dos fluxos de pensamento, destacou-se os fluxos que permitem observar elementos de aprendizagem da derivada, como no mundo corporificado, que apresenta aspectos sensíveis e perceptíveis aos sentidos, ocasião em que é tratado como a inclinação da reta tangente, a retidão local de uma curva ou a taxa de variação instantânea; no mundo simbólico, são observadas rotinas e processos tácitos a esse conceito, que são executados a fim de se criar simbologias próprias; e no mundo formal, observou-se a estrutura axiomática que a derivada pode ser concebida. Esta tese apresenta uma proposta teórica exploratória, pois se trata de uma pesquisa que utiliza apenas documentos para construir os próprios conceitos e argumentos, utilizando o rigor e a coerência lógica, para produzir um material de base para novos estudos. Outro resultado observado, que resultou em um avanço dentre as teorias discutidas, refere-se a característica perceptível da derivada, pertencente ao mundo corporificado, pois esta desvincula-se de características processuais, propiciando dessa forma, oferecer um referencial base para novas investigações no processo de ensino e aprendizagem da derivadaCoordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfhttp://tede2.pucsp.br/tede/retrieve/39855/Jayme%20do%20Carmo%20Macedo%20Leme.pdf.jpgporPontifícia Universidade Católica de São PauloPrograma de Estudos Pós-Graduados em Educação MatemáticaPUC-SPBrasilFaculdade de Ciências Exatas e TecnologiaAprendizagem da derivadaTrês Mundos da MatemáticaFluxos de pensamentoLearning of derivativeThree Worlds of MathematicsThought flowsCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAAprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamentoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da PUC_SPinstname:Pontifícia Universidade Católica de São Paulo (PUC-SP)instacron:PUC_SPTEXTJayme do Carmo Macedo Leme.pdf.txtJayme do Carmo Macedo Leme.pdf.txtExtracted texttext/plain180636https://repositorio.pucsp.br/xmlui/bitstream/handle/19156/4/Jayme%20do%20Carmo%20Macedo%20Leme.pdf.txtf59d1ee56b0f447b0fa8a2f9d7a7c555MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165https://repositorio.pucsp.br/xmlui/bitstream/handle/19156/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALJayme do Carmo Macedo Leme.pdfJayme do Carmo Macedo Leme.pdfapplication/pdf2250748https://repositorio.pucsp.br/xmlui/bitstream/handle/19156/2/Jayme%20do%20Carmo%20Macedo%20Leme.pdf2ae7e03aa0d8c8057f0dcb3624011c98MD52THUMBNAILJayme do Carmo Macedo Leme.pdf.jpgJayme do Carmo Macedo Leme.pdf.jpgGenerated Thumbnailimage/jpeg1943https://repositorio.pucsp.br/xmlui/bitstream/handle/19156/3/Jayme%20do%20Carmo%20Macedo%20Leme.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD53handle/191562022-04-28 17:03:55.11oai:repositorio.pucsp.br:handle/19156Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Repositório Institucionalhttps://sapientia.pucsp.br/https://sapientia.pucsp.br/oai/requestbngkatende@pucsp.br||rapassi@pucsp.bropendoar:2022-04-28T20:03:55Repositório Institucional da PUC_SP - Pontifícia Universidade Católica de São Paulo (PUC-SP)false |
| dc.title.por.fl_str_mv |
Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento |
| title |
Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento |
| spellingShingle |
Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento Leme, Jayme do Carmo Macedo Aprendizagem da derivada Três Mundos da Matemática Fluxos de pensamento Learning of derivative Three Worlds of Mathematics Thought flows CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento |
| title_full |
Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento |
| title_fullStr |
Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento |
| title_full_unstemmed |
Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento |
| title_sort |
Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento |
| author |
Leme, Jayme do Carmo Macedo |
| author_facet |
Leme, Jayme do Carmo Macedo |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Igliori, Sonia Barbosa Camargo |
| dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771962P9 |
| dc.contributor.author.fl_str_mv |
Leme, Jayme do Carmo Macedo |
| contributor_str_mv |
Igliori, Sonia Barbosa Camargo |
| dc.subject.por.fl_str_mv |
Aprendizagem da derivada Três Mundos da Matemática Fluxos de pensamento |
| topic |
Aprendizagem da derivada Três Mundos da Matemática Fluxos de pensamento Learning of derivative Three Worlds of Mathematics Thought flows CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| dc.subject.eng.fl_str_mv |
Learning of derivative Three Worlds of Mathematics Thought flows |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
This thesis has as main theme the learning of the derivative. The research was motivated by the questioning: What are the different thoughts related to the learning process of a concept? Thus, the theory of the Three Worlds of Mathematics proposed by David Tall was used as basis, what brought elements that allow us to understand how humans learn to think mathematically. From this framework, was developed nine thought flows involved in learning a mathematical concept. A study of the derivative is also held to compose the material analyzed in this research and, from the perspective of thought flows, specific flows that allow us to observe learning elements of derivative were highlighted, as in the embodied world, which presents sensitive and noticeable aspects, when it is treated as the tangent line slope, place of righteousness instant variation curve or rate. In the symbolic world, it’s possible to observe routines and tacit processes to this concept, which are run in order to create their own symbols; and in the formal world, it was observed the axiomatic structure that a derivative can be designed. This thesis follows the exploratory theoretical proposal, because it is a research that relies only on documents to build its own concepts and arguments, using the accuracy and logical consistency to produce a base material for further research. Another result observed, which resulted in a breakthrough among the theories discussed, refers to noticeable feature of the derivative, belonging to the embodied world as this unlinked is procedural characteristics, providing thus provide a reference basis for further investigations in the process teaching and learning derivative |
| publishDate |
2016 |
| dc.date.accessioned.fl_str_mv |
2016-10-04T17:17:29Z |
| dc.date.issued.fl_str_mv |
2016-06-08 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
Leme, Jayme do Carmo Macedo. Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento. 2016. 117 f. Tese (Doutorado em Educação Matemática) - Programa de Estudos Pós-Graduados em Educação Matemática, Pontifícia Universidade Católica de São Paulo, São Paulo, 2016. |
| dc.identifier.uri.fl_str_mv |
https://tede2.pucsp.br/handle/handle/19156 |
| identifier_str_mv |
Leme, Jayme do Carmo Macedo. Aprendizagem da derivada: uma perspectiva de análise pelos fluxos de pensamento. 2016. 117 f. Tese (Doutorado em Educação Matemática) - Programa de Estudos Pós-Graduados em Educação Matemática, Pontifícia Universidade Católica de São Paulo, São Paulo, 2016. |
| url |
https://tede2.pucsp.br/handle/handle/19156 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica de São Paulo |
| dc.publisher.program.fl_str_mv |
Programa de Estudos Pós-Graduados em Educação Matemática |
| dc.publisher.initials.fl_str_mv |
PUC-SP |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Faculdade de Ciências Exatas e Tecnologia |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica de São Paulo |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da PUC_SP instname:Pontifícia Universidade Católica de São Paulo (PUC-SP) instacron:PUC_SP |
| instname_str |
Pontifícia Universidade Católica de São Paulo (PUC-SP) |
| instacron_str |
PUC_SP |
| institution |
PUC_SP |
| reponame_str |
Repositório Institucional da PUC_SP |
| collection |
Repositório Institucional da PUC_SP |
| bitstream.url.fl_str_mv |
https://repositorio.pucsp.br/xmlui/bitstream/handle/19156/4/Jayme%20do%20Carmo%20Macedo%20Leme.pdf.txt https://repositorio.pucsp.br/xmlui/bitstream/handle/19156/1/license.txt https://repositorio.pucsp.br/xmlui/bitstream/handle/19156/2/Jayme%20do%20Carmo%20Macedo%20Leme.pdf https://repositorio.pucsp.br/xmlui/bitstream/handle/19156/3/Jayme%20do%20Carmo%20Macedo%20Leme.pdf.jpg |
| bitstream.checksum.fl_str_mv |
f59d1ee56b0f447b0fa8a2f9d7a7c555 bd3efa91386c1718a7f26a329fdcb468 2ae7e03aa0d8c8057f0dcb3624011c98 cc73c4c239a4c332d642ba1e7c7a9fb2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da PUC_SP - Pontifícia Universidade Católica de São Paulo (PUC-SP) |
| repository.mail.fl_str_mv |
bngkatende@pucsp.br||rapassi@pucsp.br |
| _version_ |
1840370487111188480 |