Método de previsão de vendas e estimativa de reposição de itens no varejo da moda
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://tede2.pucrs.br/tede2/handle/tede/8171 |
Resumo: | A previsão de vendas no varejo da moda é um problema complexo e um dos componentes essenciais da cadeia de suprimento, sendo utilizada tanto para previsão de longo prazo quanto para a previsão de curto prazo. A previsão de longo prazo é importante pois é difícil, em termos de produção, enfrentar o desvio da demanda em um curto espaço de tempo, então a previsão antecipada permite aumentar a capacidade de resposta da cadeia de suprimento. A previsão de curto prazo é importante para o acompanhamento da demanda, visando a adequação do nível de estoque. No varejo da moda a alta rotatividade, o curto ciclo de vida dos produtos e a consequente ausência de dados históricos dificulta a geração de previsões precisas. Para lidar com esse problema, há na literatura três principais abordagens: estatística, baseada em inteligência artificial e híbrida, que combina estatística e inteligência artificial. Esta pesquisa propõe um método de previsão de vendas em duas etapas: (1) previsão de longo prazo, que pretende detectar diferentes grupos de produtos com ciclos de vida semelhantes, permitindo assim a identificação do comportamento médio de cada um dos grupos e (2) previsão de curto prazo que busca associar os produtos novos nos grupos identificados na etapa de longo prazo e ajustar a curva de vendas levando em consideração fatores conservadores, otimistas ou pessimistas. Além disso, nesta etapa é possível realizar a previsão de reposição de itens. Como diferencial, o método proposto utiliza a medida de distância Dynamic Time Warping, identificada na literatura como adequada para lidar com séries temporais. O método é testado utilizando dois conjuntos de dados reais de varejistas da moda, foram realizados dois experimentos, que demonstram a qualidade da contribuição. |
| id |
P_RS_2ff78197c0186678d347fa39aee4f06b |
|---|---|
| oai_identifier_str |
oai:tede2.pucrs.br:tede/8171 |
| network_acronym_str |
P_RS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository_id_str |
|
| spelling |
Método de previsão de vendas e estimativa de reposição de itens no varejo da modaMineração de DadosSéries TemporaisPrevisão de VendasIndústria da ModaDynamic Time WarpingData MiningTime SeriesSales ForecastFashion IndustryCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOA previsão de vendas no varejo da moda é um problema complexo e um dos componentes essenciais da cadeia de suprimento, sendo utilizada tanto para previsão de longo prazo quanto para a previsão de curto prazo. A previsão de longo prazo é importante pois é difícil, em termos de produção, enfrentar o desvio da demanda em um curto espaço de tempo, então a previsão antecipada permite aumentar a capacidade de resposta da cadeia de suprimento. A previsão de curto prazo é importante para o acompanhamento da demanda, visando a adequação do nível de estoque. No varejo da moda a alta rotatividade, o curto ciclo de vida dos produtos e a consequente ausência de dados históricos dificulta a geração de previsões precisas. Para lidar com esse problema, há na literatura três principais abordagens: estatística, baseada em inteligência artificial e híbrida, que combina estatística e inteligência artificial. Esta pesquisa propõe um método de previsão de vendas em duas etapas: (1) previsão de longo prazo, que pretende detectar diferentes grupos de produtos com ciclos de vida semelhantes, permitindo assim a identificação do comportamento médio de cada um dos grupos e (2) previsão de curto prazo que busca associar os produtos novos nos grupos identificados na etapa de longo prazo e ajustar a curva de vendas levando em consideração fatores conservadores, otimistas ou pessimistas. Além disso, nesta etapa é possível realizar a previsão de reposição de itens. Como diferencial, o método proposto utiliza a medida de distância Dynamic Time Warping, identificada na literatura como adequada para lidar com séries temporais. O método é testado utilizando dois conjuntos de dados reais de varejistas da moda, foram realizados dois experimentos, que demonstram a qualidade da contribuição.Demand forecasting is one of the most essential components of supply chain management. Forecasts are used both for long-term and for short-term. Long-term forecasts are important because it is difficult in terms of production to face the demand deviation in a short time, so the anticipation of prediction helps to increase the responsiveness of the supply chain. Short term forecasts are important for the demand monitoring aiming to keep healthy inventory levels. In the fashion industry, the high change of products, the short life cycle and the lack of historical data makes difficult accurate predictions. To deal with this problem, the literature presents three approaches: statistical, artificial intelligence and hybrid that combines statistical and artificial intelligence. This research presents a two-phased method: (1) long-term prediction, identifies the different life cycles in the products, allowing the identification of sales prototypes for each cluster and (2) short-term prediction, classifies new products in the clusters labeled in the long-term phase and adjusts the sales curve considering optimistic and pessimist factors. As a differential, the method is based in dynamic time warping, distance measure for time series. The method is tested in a real dataset with real data from fashion retailers that demonstrates the quality of the contribution.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoRuiz, Duncan Dubugras Alcobahttp://lattes.cnpq.br/8250832800932125Santos, Graziele Marques Mazuco dos2018-06-27T13:21:15Z2018-04-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/8171porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2018-06-27T15:01:06Zoai:tede2.pucrs.br:tede/8171Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2018-06-27T15:01:06Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
| dc.title.none.fl_str_mv |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
| title |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
| spellingShingle |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda Santos, Graziele Marques Mazuco dos Mineração de Dados Séries Temporais Previsão de Vendas Indústria da Moda Dynamic Time Warping Data Mining Time Series Sales Forecast Fashion Industry CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| title_short |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
| title_full |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
| title_fullStr |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
| title_full_unstemmed |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
| title_sort |
Método de previsão de vendas e estimativa de reposição de itens no varejo da moda |
| author |
Santos, Graziele Marques Mazuco dos |
| author_facet |
Santos, Graziele Marques Mazuco dos |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Ruiz, Duncan Dubugras Alcoba http://lattes.cnpq.br/8250832800932125 |
| dc.contributor.author.fl_str_mv |
Santos, Graziele Marques Mazuco dos |
| dc.subject.por.fl_str_mv |
Mineração de Dados Séries Temporais Previsão de Vendas Indústria da Moda Dynamic Time Warping Data Mining Time Series Sales Forecast Fashion Industry CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| topic |
Mineração de Dados Séries Temporais Previsão de Vendas Indústria da Moda Dynamic Time Warping Data Mining Time Series Sales Forecast Fashion Industry CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| description |
A previsão de vendas no varejo da moda é um problema complexo e um dos componentes essenciais da cadeia de suprimento, sendo utilizada tanto para previsão de longo prazo quanto para a previsão de curto prazo. A previsão de longo prazo é importante pois é difícil, em termos de produção, enfrentar o desvio da demanda em um curto espaço de tempo, então a previsão antecipada permite aumentar a capacidade de resposta da cadeia de suprimento. A previsão de curto prazo é importante para o acompanhamento da demanda, visando a adequação do nível de estoque. No varejo da moda a alta rotatividade, o curto ciclo de vida dos produtos e a consequente ausência de dados históricos dificulta a geração de previsões precisas. Para lidar com esse problema, há na literatura três principais abordagens: estatística, baseada em inteligência artificial e híbrida, que combina estatística e inteligência artificial. Esta pesquisa propõe um método de previsão de vendas em duas etapas: (1) previsão de longo prazo, que pretende detectar diferentes grupos de produtos com ciclos de vida semelhantes, permitindo assim a identificação do comportamento médio de cada um dos grupos e (2) previsão de curto prazo que busca associar os produtos novos nos grupos identificados na etapa de longo prazo e ajustar a curva de vendas levando em consideração fatores conservadores, otimistas ou pessimistas. Além disso, nesta etapa é possível realizar a previsão de reposição de itens. Como diferencial, o método proposto utiliza a medida de distância Dynamic Time Warping, identificada na literatura como adequada para lidar com séries temporais. O método é testado utilizando dois conjuntos de dados reais de varejistas da moda, foram realizados dois experimentos, que demonstram a qualidade da contribuição. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-06-27T13:21:15Z 2018-04-26 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://tede2.pucrs.br/tede2/handle/tede/8171 |
| url |
http://tede2.pucrs.br/tede2/handle/tede/8171 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
| instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| instacron_str |
PUC_RS |
| institution |
PUC_RS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
| _version_ |
1850041290967744512 |