Predictive metric for optimal budget allocation in differential privacy
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://tede2.pucrs.br/tede2/handle/tede/11680 |
Resumo: | This work addresses the critical issue of budget allocation in Differential Privacy (DP) applications, specifically for scenarios where summary statistics are released. Our main objective is to develop a novel metric and scenario that leverages information about future data usage to optimize budget distribution. Effective budget distribution is pivotal in enhancing data utility without compromising privacy, a significant challenge in the DP field. We identify and exploit a gap related to the interactions between DP queries to improve data utility. Our metric is formally defined, and we apply it through a hypothetical scenario using synthetic data. The results indicate a substantial improvement in data utility while maintaining privacy. This study offers a valuable contribution to the DP field and opens avenues for future research and practical applications in real-world scenarios |
| id |
P_RS_53890d15b5fc3de6410b457a7a8045ee |
|---|---|
| oai_identifier_str |
oai:tede2.pucrs.br:tede/11680 |
| network_acronym_str |
P_RS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository_id_str |
|
| spelling |
Predictive metric for optimal budget allocation in differential privacyMétrica preditiva para alocação ótima de orçamento em privacidade diferencialDifferential PrivacyAnonymizationPrivacyDatasetMetricSummary StatisticsDifferential PrivacyAnonimizaçãoPrivacidadeDatasetMetricaEstatísticas descritivasCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOThis work addresses the critical issue of budget allocation in Differential Privacy (DP) applications, specifically for scenarios where summary statistics are released. Our main objective is to develop a novel metric and scenario that leverages information about future data usage to optimize budget distribution. Effective budget distribution is pivotal in enhancing data utility without compromising privacy, a significant challenge in the DP field. We identify and exploit a gap related to the interactions between DP queries to improve data utility. Our metric is formally defined, and we apply it through a hypothetical scenario using synthetic data. The results indicate a substantial improvement in data utility while maintaining privacy. This study offers a valuable contribution to the DP field and opens avenues for future research and practical applications in real-world scenariosNeste trabalho, abordamos a questão crítica da alocação de orçamento em aplicações de Privacidade Diferencial (DP), especificamente para cenários onde estatísticas descritivas são divulgadas. Nosso principal objetivo é desenvolver uma métrica e um cenário inovadores que utilizem informações sobre o uso futuro dos dados para otimizar a distribuição do orçamento. Uma distribuição de orçamento eficaz é fundamental para melhorar a utilidade dos dados sem comprometer a privacidade, um desafio significativo no campo da DP. Identificamos e exploramos uma lacuna relacionada às interações entre consultas de DP para melhorar a utilidade dos dados. Nossa métrica é formalmente definida e demonstramos sua aplicação por meio de um cenário hipotético utilizando dados sintéticos. Os resultados indicam uma melhoria substancial na utilidade dos dados, mantendo a privacidade. Este estudo não apenas oferece uma contribuição valiosa para o campo da DP, mas também abre caminhos para futuras pesquisas e aplicações práticas em cenários do mundo realPontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoZorzo, Avelino Franciscohttp://lattes.cnpq.br/4315350764773182Nunes, Henry Cabral2025-06-12T14:18:08Z2024-08-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://tede2.pucrs.br/tede2/handle/tede/11680enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2025-06-12T15:00:15Zoai:tede2.pucrs.br:tede/11680Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2025-06-12T15:00:15Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
| dc.title.none.fl_str_mv |
Predictive metric for optimal budget allocation in differential privacy Métrica preditiva para alocação ótima de orçamento em privacidade diferencial |
| title |
Predictive metric for optimal budget allocation in differential privacy |
| spellingShingle |
Predictive metric for optimal budget allocation in differential privacy Nunes, Henry Cabral Differential Privacy Anonymization Privacy Dataset Metric Summary Statistics Differential Privacy Anonimização Privacidade Dataset Metrica Estatísticas descritivas CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| title_short |
Predictive metric for optimal budget allocation in differential privacy |
| title_full |
Predictive metric for optimal budget allocation in differential privacy |
| title_fullStr |
Predictive metric for optimal budget allocation in differential privacy |
| title_full_unstemmed |
Predictive metric for optimal budget allocation in differential privacy |
| title_sort |
Predictive metric for optimal budget allocation in differential privacy |
| author |
Nunes, Henry Cabral |
| author_facet |
Nunes, Henry Cabral |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Zorzo, Avelino Francisco http://lattes.cnpq.br/4315350764773182 |
| dc.contributor.author.fl_str_mv |
Nunes, Henry Cabral |
| dc.subject.por.fl_str_mv |
Differential Privacy Anonymization Privacy Dataset Metric Summary Statistics Differential Privacy Anonimização Privacidade Dataset Metrica Estatísticas descritivas CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| topic |
Differential Privacy Anonymization Privacy Dataset Metric Summary Statistics Differential Privacy Anonimização Privacidade Dataset Metrica Estatísticas descritivas CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| description |
This work addresses the critical issue of budget allocation in Differential Privacy (DP) applications, specifically for scenarios where summary statistics are released. Our main objective is to develop a novel metric and scenario that leverages information about future data usage to optimize budget distribution. Effective budget distribution is pivotal in enhancing data utility without compromising privacy, a significant challenge in the DP field. We identify and exploit a gap related to the interactions between DP queries to improve data utility. Our metric is formally defined, and we apply it through a hypothetical scenario using synthetic data. The results indicate a substantial improvement in data utility while maintaining privacy. This study offers a valuable contribution to the DP field and opens avenues for future research and practical applications in real-world scenarios |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-08-28 2025-06-12T14:18:08Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://tede2.pucrs.br/tede2/handle/tede/11680 |
| url |
https://tede2.pucrs.br/tede2/handle/tede/11680 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
| instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| instacron_str |
PUC_RS |
| institution |
PUC_RS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
| _version_ |
1850041319487963136 |