Estimativa robusta da frequência cardíaca a partir de sinais de fotopletismografia de pulso

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Benetti, Tiago
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/8337
Resumo: O monitoramento da frequência cardíaca utilizando sinais de Fotopletismografia ou PPG (do inglês, Photopletismography) adquiridos do pulso de indivíduos tem se popularizado devido ao surgimento de inúmeros dispositivos wearable de baixo custo. No entanto, o monitoramento durante atividades físicas tem dificuldades em razão da influência de artefatos de movimento nos sinais de PPG. O objetivo deste trabalho é introduzir um novo algoritmo capaz de remover artefatos de movimento e estimar a frequência cardíaca de sinais de PPG de pulso. Os algoritmos do Mínimo Quadrado Médio Normalizado ou NLMS (do inglês, Normalized Least Mean Square) e de Mínimos Quadrados Recursivos ou RLS (do inglês, Recursive Least Squares) são propostos para uma estrutura de filtragem adaptativa que utiliza sinais de aceleração como referência para remover os artefatos de movimento. O algoritmo utiliza o Periodograma dos sinais filtrados para extrair suas frequências cardíacas, que serão utilizadas juntamente com um Índice de Qualidade do Sinal de PPG para alimentar a entrada de um Filtro de Kalman. Heurísticas específicas e o Índice de Qualidade colaboram para que filtro de Kalman forneça uma estimativa da frequência cardíaca com alta acurácia e robustez a incertezas de medição. O algoritmo foi validado a partir da frequência cardíaca obtida de sinais de Eletrocardiografia e o método proposto com o algoritmo RLS apresentou os melhores resultados com um erro médio absoluto de 1,54 batimentos por minuto (bpm) e desvio padrão de 0,62 bpm, registrados para 12 indivíduos realizando uma atividade de corrida em uma esteira com velocidades variadas. Os resultados tornam o desempenho do algoritmo comparável e até mesmo melhor que vários métodos desenvolvidos recentemente neste campo. Além disso, o algoritmo apresentou um custo computacional baixo e adequado ao intervalo de tempo em que a estimativa da frequência cardíaca é realizada. Dessa forma, espera-se que este algoritmo melhore a obtenção da frequência cardíaca em dispositivos wearable atualmente disponíveis.
id P_RS_57a75e61339e42abf8b3978321df52bc
oai_identifier_str oai:tede2.pucrs.br:tede/8337
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Estimativa robusta da frequência cardíaca a partir de sinais de fotopletismografia de pulsoAlgoritmo RLSArtefatos de MovimentoFiltros AdaptativosFiltro de KalmanFrequência CardíacaFotopletismografia (PPG)Índice de Qualidade do SinalAdaptive FiltersHeart RateKalman FilterMotion ArtifactsPhotoplethysmography (PPG)RLS AlgorithmSignal Quality IndexENGENHARIASO monitoramento da frequência cardíaca utilizando sinais de Fotopletismografia ou PPG (do inglês, Photopletismography) adquiridos do pulso de indivíduos tem se popularizado devido ao surgimento de inúmeros dispositivos wearable de baixo custo. No entanto, o monitoramento durante atividades físicas tem dificuldades em razão da influência de artefatos de movimento nos sinais de PPG. O objetivo deste trabalho é introduzir um novo algoritmo capaz de remover artefatos de movimento e estimar a frequência cardíaca de sinais de PPG de pulso. Os algoritmos do Mínimo Quadrado Médio Normalizado ou NLMS (do inglês, Normalized Least Mean Square) e de Mínimos Quadrados Recursivos ou RLS (do inglês, Recursive Least Squares) são propostos para uma estrutura de filtragem adaptativa que utiliza sinais de aceleração como referência para remover os artefatos de movimento. O algoritmo utiliza o Periodograma dos sinais filtrados para extrair suas frequências cardíacas, que serão utilizadas juntamente com um Índice de Qualidade do Sinal de PPG para alimentar a entrada de um Filtro de Kalman. Heurísticas específicas e o Índice de Qualidade colaboram para que filtro de Kalman forneça uma estimativa da frequência cardíaca com alta acurácia e robustez a incertezas de medição. O algoritmo foi validado a partir da frequência cardíaca obtida de sinais de Eletrocardiografia e o método proposto com o algoritmo RLS apresentou os melhores resultados com um erro médio absoluto de 1,54 batimentos por minuto (bpm) e desvio padrão de 0,62 bpm, registrados para 12 indivíduos realizando uma atividade de corrida em uma esteira com velocidades variadas. Os resultados tornam o desempenho do algoritmo comparável e até mesmo melhor que vários métodos desenvolvidos recentemente neste campo. Além disso, o algoritmo apresentou um custo computacional baixo e adequado ao intervalo de tempo em que a estimativa da frequência cardíaca é realizada. Dessa forma, espera-se que este algoritmo melhore a obtenção da frequência cardíaca em dispositivos wearable atualmente disponíveis.Heart rate monitoring using Photoplethysmography (PPG) signals acquired from the individuals pulse has become popular due to emergence of numerous low cost wearable devices. However, monitoring during physical activities has obstacles because of the influence of motion artifacts in PPG signals. The objective of this work is to introduce a new algorithm capable of removing motion artifacts and estimating heart rate from pulse PPG signals. Normalized Least Mean Square (NLMS) and Recursive Least Squares (RLS) algorithms are proposed for an adaptive filtering structure that uses acceleration signals as reference to remove motion artifacts. The algorithm uses the Periodogram of the filtered signals to extract their heart rates, which will be used together with a PPG Signal Quality Index to feed the input of a Kalman Filter. Specific heuristics and the Quality Index collaborate so that the Kalman filter provides a heart rate estimate with high accuracy and robustness to measurement uncertainties. The algorithm was validated from the heart rate obtained from Electrocardiography signals and the proposed method with the RLS algorithm presented the best results with an absolute mean error of 1.54 beats per minute (bpm) and standard deviation of 0.62 bpm, recorded for 12 individuals performing a running activity on a treadmill with varying speeds. The results make the performance of the algorithm comparable and even better than several recently developed methods in this field. In addition, the algorithm presented a low computational cost and suitable to the time interval in which the heart rate estimate is performed. Thus, it is expected that this algorithm will improve the obtaining of heart rate in currently available wearable devices.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Engenharia ElétricaBaptista, Rafael Reimannhttp://lattes.cnpq.br/3050041150325700Benetti, Tiago2018-10-30T17:27:25Z2018-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/8337porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2018-10-30T23:02:30Zoai:tede2.pucrs.br:tede/8337Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2018-10-30T23:02:30Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Estimativa robusta da frequência cardíaca a partir de sinais de fotopletismografia de pulso
title Estimativa robusta da frequência cardíaca a partir de sinais de fotopletismografia de pulso
spellingShingle Estimativa robusta da frequência cardíaca a partir de sinais de fotopletismografia de pulso
Benetti, Tiago
Algoritmo RLS
Artefatos de Movimento
Filtros Adaptativos
Filtro de Kalman
Frequência Cardíaca
Fotopletismografia (PPG)
Índice de Qualidade do Sinal
Adaptive Filters
Heart Rate
Kalman Filter
Motion Artifacts
Photoplethysmography (PPG)
RLS Algorithm
Signal Quality Index
ENGENHARIAS
title_short Estimativa robusta da frequência cardíaca a partir de sinais de fotopletismografia de pulso
title_full Estimativa robusta da frequência cardíaca a partir de sinais de fotopletismografia de pulso
title_fullStr Estimativa robusta da frequência cardíaca a partir de sinais de fotopletismografia de pulso
title_full_unstemmed Estimativa robusta da frequência cardíaca a partir de sinais de fotopletismografia de pulso
title_sort Estimativa robusta da frequência cardíaca a partir de sinais de fotopletismografia de pulso
author Benetti, Tiago
author_facet Benetti, Tiago
author_role author
dc.contributor.none.fl_str_mv Baptista, Rafael Reimann
http://lattes.cnpq.br/3050041150325700
dc.contributor.author.fl_str_mv Benetti, Tiago
dc.subject.por.fl_str_mv Algoritmo RLS
Artefatos de Movimento
Filtros Adaptativos
Filtro de Kalman
Frequência Cardíaca
Fotopletismografia (PPG)
Índice de Qualidade do Sinal
Adaptive Filters
Heart Rate
Kalman Filter
Motion Artifacts
Photoplethysmography (PPG)
RLS Algorithm
Signal Quality Index
ENGENHARIAS
topic Algoritmo RLS
Artefatos de Movimento
Filtros Adaptativos
Filtro de Kalman
Frequência Cardíaca
Fotopletismografia (PPG)
Índice de Qualidade do Sinal
Adaptive Filters
Heart Rate
Kalman Filter
Motion Artifacts
Photoplethysmography (PPG)
RLS Algorithm
Signal Quality Index
ENGENHARIAS
description O monitoramento da frequência cardíaca utilizando sinais de Fotopletismografia ou PPG (do inglês, Photopletismography) adquiridos do pulso de indivíduos tem se popularizado devido ao surgimento de inúmeros dispositivos wearable de baixo custo. No entanto, o monitoramento durante atividades físicas tem dificuldades em razão da influência de artefatos de movimento nos sinais de PPG. O objetivo deste trabalho é introduzir um novo algoritmo capaz de remover artefatos de movimento e estimar a frequência cardíaca de sinais de PPG de pulso. Os algoritmos do Mínimo Quadrado Médio Normalizado ou NLMS (do inglês, Normalized Least Mean Square) e de Mínimos Quadrados Recursivos ou RLS (do inglês, Recursive Least Squares) são propostos para uma estrutura de filtragem adaptativa que utiliza sinais de aceleração como referência para remover os artefatos de movimento. O algoritmo utiliza o Periodograma dos sinais filtrados para extrair suas frequências cardíacas, que serão utilizadas juntamente com um Índice de Qualidade do Sinal de PPG para alimentar a entrada de um Filtro de Kalman. Heurísticas específicas e o Índice de Qualidade colaboram para que filtro de Kalman forneça uma estimativa da frequência cardíaca com alta acurácia e robustez a incertezas de medição. O algoritmo foi validado a partir da frequência cardíaca obtida de sinais de Eletrocardiografia e o método proposto com o algoritmo RLS apresentou os melhores resultados com um erro médio absoluto de 1,54 batimentos por minuto (bpm) e desvio padrão de 0,62 bpm, registrados para 12 indivíduos realizando uma atividade de corrida em uma esteira com velocidades variadas. Os resultados tornam o desempenho do algoritmo comparável e até mesmo melhor que vários métodos desenvolvidos recentemente neste campo. Além disso, o algoritmo apresentou um custo computacional baixo e adequado ao intervalo de tempo em que a estimativa da frequência cardíaca é realizada. Dessa forma, espera-se que este algoritmo melhore a obtenção da frequência cardíaca em dispositivos wearable atualmente disponíveis.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-30T17:27:25Z
2018-08-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/8337
url http://tede2.pucrs.br/tede2/handle/tede/8337
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Engenharia Elétrica
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1850041292017369088