Ranking ligands in structure-based virtual screening using siamese neural networks
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Informática Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://tede2.pucrs.br/tede2/handle/tede/7763 |
Resumo: | Structure-based virtual screening (SBVS) on compounds databases has been widely applied in early stage of the drug discovery on drug target with known 3D structure. In SBVS, computational approaches usually ’dock’ small molecules into binding site of drug target and ’score’ their binding affinity. However, the costs involved in applying docking algorithms into huge compounds databases are prohibitive, due to the computational resources required by this operation. In this context,different types of machine learning strategies can be applied to rank ligands, based on binding affinity,and to reduce the number of compounds to be tested. In this work, we propose a deep learning energy-based model using siamese neural networks to rank ligands. This model takes as inputs grids of biochemical properties of ligands and receptors and calculates their compatibility. We show that the model can learn to identify important biochemical interactions between ligands and receptors. Besides, we demonstrate that the compatibility score is computed based only on conformation of small molecule, independent of its position and orientation in relation to the receptor. The proposed model was trained using known ligands and decoys in a Fully Flexible Receptor model of InhA-NADH complex (PDB ID: 1ENY), having achieved outstanding results. |
| id |
P_RS_94ee3f65e2f26138046b23846184a677 |
|---|---|
| oai_identifier_str |
oai:tede2.pucrs.br:tede/7763 |
| network_acronym_str |
P_RS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository_id_str |
|
| spelling |
Ranking ligands in structure-based virtual screening using siamese neural networksTriagem VirtualRedes Neurais SiamesesFunções de EscoreDocagem MolecularVirtual ScreeningSiamese Neural NetworkScoring FunctionMolecular DockingCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOStructure-based virtual screening (SBVS) on compounds databases has been widely applied in early stage of the drug discovery on drug target with known 3D structure. In SBVS, computational approaches usually ’dock’ small molecules into binding site of drug target and ’score’ their binding affinity. However, the costs involved in applying docking algorithms into huge compounds databases are prohibitive, due to the computational resources required by this operation. In this context,different types of machine learning strategies can be applied to rank ligands, based on binding affinity,and to reduce the number of compounds to be tested. In this work, we propose a deep learning energy-based model using siamese neural networks to rank ligands. This model takes as inputs grids of biochemical properties of ligands and receptors and calculates their compatibility. We show that the model can learn to identify important biochemical interactions between ligands and receptors. Besides, we demonstrate that the compatibility score is computed based only on conformation of small molecule, independent of its position and orientation in relation to the receptor. The proposed model was trained using known ligands and decoys in a Fully Flexible Receptor model of InhA-NADH complex (PDB ID: 1ENY), having achieved outstanding results.Triagem virtual de bancos de dados de ligantes é amplamente utilizada nos estágios iniciais do processo de descoberta de fármacos. Abordagens computacionais ’docam’ uma pequena molécula dentro do sítio ativo de um estrutura biológica alvo e avaliam a afinidade das interações entre a molécula e a estrutura. Todavia, os custos envolvidos ao aplicar algoritmos de docagem molecular em grandes bancos de ligantes são proibitivos, dado a quantidade de recursos computacionais necessários para essa execução. Nesse contexto, estratégias de aprendizagem de máquina podem ser aplicadas para ranquear ligantes baseadas na afinidade com determinada estrutura biológica e, dessa forma, reduzir o número de compostos químicos a serem testados. Nesse trabalho, propomos um modelo para ranquear ligantes baseados na arquitetura de redes neurais siamesas. Esse modelo calcula a compatibilidade entre receptor e ligante usando grades de propriedades bioquímicas. Nós também mostramos que esse modelo pode aprender a identificar interações moleculares importantes entre ligante e receptor. A compatibilidade é calculada baseada em relação à conformação do ligante, independente de sua posição e orientação em relação ao receptor. O modelo proposto foi treinado usando ligantes ativos previamente conhecidos e moléculas chamarizes (decoys) em um modelo de receptor totalmente flexível (Fully Flexible Receptor - FFR) do complexo InhA-NADH da Mycobacterium tuberculosis, encontrando ótimos resultados.Pontifícia Universidade Católica do Rio Grande do SulFaculdade de InformáticaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoRuiz, Duncan Dubugras Alcobahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783178Y6Santos, Alan Diego dos2017-12-04T16:18:35Z2017-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/7763enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2017-12-11T14:01:11Zoai:tede2.pucrs.br:tede/7763Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2017-12-11T14:01:11Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
| dc.title.none.fl_str_mv |
Ranking ligands in structure-based virtual screening using siamese neural networks |
| title |
Ranking ligands in structure-based virtual screening using siamese neural networks |
| spellingShingle |
Ranking ligands in structure-based virtual screening using siamese neural networks Santos, Alan Diego dos Triagem Virtual Redes Neurais Siameses Funções de Escore Docagem Molecular Virtual Screening Siamese Neural Network Scoring Function Molecular Docking CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| title_short |
Ranking ligands in structure-based virtual screening using siamese neural networks |
| title_full |
Ranking ligands in structure-based virtual screening using siamese neural networks |
| title_fullStr |
Ranking ligands in structure-based virtual screening using siamese neural networks |
| title_full_unstemmed |
Ranking ligands in structure-based virtual screening using siamese neural networks |
| title_sort |
Ranking ligands in structure-based virtual screening using siamese neural networks |
| author |
Santos, Alan Diego dos |
| author_facet |
Santos, Alan Diego dos |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Ruiz, Duncan Dubugras Alcoba http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783178Y6 |
| dc.contributor.author.fl_str_mv |
Santos, Alan Diego dos |
| dc.subject.por.fl_str_mv |
Triagem Virtual Redes Neurais Siameses Funções de Escore Docagem Molecular Virtual Screening Siamese Neural Network Scoring Function Molecular Docking CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| topic |
Triagem Virtual Redes Neurais Siameses Funções de Escore Docagem Molecular Virtual Screening Siamese Neural Network Scoring Function Molecular Docking CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| description |
Structure-based virtual screening (SBVS) on compounds databases has been widely applied in early stage of the drug discovery on drug target with known 3D structure. In SBVS, computational approaches usually ’dock’ small molecules into binding site of drug target and ’score’ their binding affinity. However, the costs involved in applying docking algorithms into huge compounds databases are prohibitive, due to the computational resources required by this operation. In this context,different types of machine learning strategies can be applied to rank ligands, based on binding affinity,and to reduce the number of compounds to be tested. In this work, we propose a deep learning energy-based model using siamese neural networks to rank ligands. This model takes as inputs grids of biochemical properties of ligands and receptors and calculates their compatibility. We show that the model can learn to identify important biochemical interactions between ligands and receptors. Besides, we demonstrate that the compatibility score is computed based only on conformation of small molecule, independent of its position and orientation in relation to the receptor. The proposed model was trained using known ligands and decoys in a Fully Flexible Receptor model of InhA-NADH complex (PDB ID: 1ENY), having achieved outstanding results. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-12-04T16:18:35Z 2017-03-29 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://tede2.pucrs.br/tede2/handle/tede/7763 |
| url |
http://tede2.pucrs.br/tede2/handle/tede/7763 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Informática Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Informática Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
| instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| instacron_str |
PUC_RS |
| institution |
PUC_RS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
| _version_ |
1850041286957989888 |