Ranking ligands in structure-based virtual screening using siamese neural networks

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Santos, Alan Diego dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Informática
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/7763
Resumo: Structure-based virtual screening (SBVS) on compounds databases has been widely applied in early stage of the drug discovery on drug target with known 3D structure. In SBVS, computational approaches usually ’dock’ small molecules into binding site of drug target and ’score’ their binding affinity. However, the costs involved in applying docking algorithms into huge compounds databases are prohibitive, due to the computational resources required by this operation. In this context,different types of machine learning strategies can be applied to rank ligands, based on binding affinity,and to reduce the number of compounds to be tested. In this work, we propose a deep learning energy-based model using siamese neural networks to rank ligands. This model takes as inputs grids of biochemical properties of ligands and receptors and calculates their compatibility. We show that the model can learn to identify important biochemical interactions between ligands and receptors. Besides, we demonstrate that the compatibility score is computed based only on conformation of small molecule, independent of its position and orientation in relation to the receptor. The proposed model was trained using known ligands and decoys in a Fully Flexible Receptor model of InhA-NADH complex (PDB ID: 1ENY), having achieved outstanding results.
id P_RS_94ee3f65e2f26138046b23846184a677
oai_identifier_str oai:tede2.pucrs.br:tede/7763
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Ranking ligands in structure-based virtual screening using siamese neural networksTriagem VirtualRedes Neurais SiamesesFunções de EscoreDocagem MolecularVirtual ScreeningSiamese Neural NetworkScoring FunctionMolecular DockingCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOStructure-based virtual screening (SBVS) on compounds databases has been widely applied in early stage of the drug discovery on drug target with known 3D structure. In SBVS, computational approaches usually ’dock’ small molecules into binding site of drug target and ’score’ their binding affinity. However, the costs involved in applying docking algorithms into huge compounds databases are prohibitive, due to the computational resources required by this operation. In this context,different types of machine learning strategies can be applied to rank ligands, based on binding affinity,and to reduce the number of compounds to be tested. In this work, we propose a deep learning energy-based model using siamese neural networks to rank ligands. This model takes as inputs grids of biochemical properties of ligands and receptors and calculates their compatibility. We show that the model can learn to identify important biochemical interactions between ligands and receptors. Besides, we demonstrate that the compatibility score is computed based only on conformation of small molecule, independent of its position and orientation in relation to the receptor. The proposed model was trained using known ligands and decoys in a Fully Flexible Receptor model of InhA-NADH complex (PDB ID: 1ENY), having achieved outstanding results.Triagem virtual de bancos de dados de ligantes é amplamente utilizada nos estágios iniciais do processo de descoberta de fármacos. Abordagens computacionais ’docam’ uma pequena molécula dentro do sítio ativo de um estrutura biológica alvo e avaliam a afinidade das interações entre a molécula e a estrutura. Todavia, os custos envolvidos ao aplicar algoritmos de docagem molecular em grandes bancos de ligantes são proibitivos, dado a quantidade de recursos computacionais necessários para essa execução. Nesse contexto, estratégias de aprendizagem de máquina podem ser aplicadas para ranquear ligantes baseadas na afinidade com determinada estrutura biológica e, dessa forma, reduzir o número de compostos químicos a serem testados. Nesse trabalho, propomos um modelo para ranquear ligantes baseados na arquitetura de redes neurais siamesas. Esse modelo calcula a compatibilidade entre receptor e ligante usando grades de propriedades bioquímicas. Nós também mostramos que esse modelo pode aprender a identificar interações moleculares importantes entre ligante e receptor. A compatibilidade é calculada baseada em relação à conformação do ligante, independente de sua posição e orientação em relação ao receptor. O modelo proposto foi treinado usando ligantes ativos previamente conhecidos e moléculas chamarizes (decoys) em um modelo de receptor totalmente flexível (Fully Flexible Receptor - FFR) do complexo InhA-NADH da Mycobacterium tuberculosis, encontrando ótimos resultados.Pontifícia Universidade Católica do Rio Grande do SulFaculdade de InformáticaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoRuiz, Duncan Dubugras Alcobahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783178Y6Santos, Alan Diego dos2017-12-04T16:18:35Z2017-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/7763enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2017-12-11T14:01:11Zoai:tede2.pucrs.br:tede/7763Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2017-12-11T14:01:11Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Ranking ligands in structure-based virtual screening using siamese neural networks
title Ranking ligands in structure-based virtual screening using siamese neural networks
spellingShingle Ranking ligands in structure-based virtual screening using siamese neural networks
Santos, Alan Diego dos
Triagem Virtual
Redes Neurais Siameses
Funções de Escore
Docagem Molecular
Virtual Screening
Siamese Neural Network
Scoring Function
Molecular Docking
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Ranking ligands in structure-based virtual screening using siamese neural networks
title_full Ranking ligands in structure-based virtual screening using siamese neural networks
title_fullStr Ranking ligands in structure-based virtual screening using siamese neural networks
title_full_unstemmed Ranking ligands in structure-based virtual screening using siamese neural networks
title_sort Ranking ligands in structure-based virtual screening using siamese neural networks
author Santos, Alan Diego dos
author_facet Santos, Alan Diego dos
author_role author
dc.contributor.none.fl_str_mv Ruiz, Duncan Dubugras Alcoba
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783178Y6
dc.contributor.author.fl_str_mv Santos, Alan Diego dos
dc.subject.por.fl_str_mv Triagem Virtual
Redes Neurais Siameses
Funções de Escore
Docagem Molecular
Virtual Screening
Siamese Neural Network
Scoring Function
Molecular Docking
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
topic Triagem Virtual
Redes Neurais Siameses
Funções de Escore
Docagem Molecular
Virtual Screening
Siamese Neural Network
Scoring Function
Molecular Docking
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description Structure-based virtual screening (SBVS) on compounds databases has been widely applied in early stage of the drug discovery on drug target with known 3D structure. In SBVS, computational approaches usually ’dock’ small molecules into binding site of drug target and ’score’ their binding affinity. However, the costs involved in applying docking algorithms into huge compounds databases are prohibitive, due to the computational resources required by this operation. In this context,different types of machine learning strategies can be applied to rank ligands, based on binding affinity,and to reduce the number of compounds to be tested. In this work, we propose a deep learning energy-based model using siamese neural networks to rank ligands. This model takes as inputs grids of biochemical properties of ligands and receptors and calculates their compatibility. We show that the model can learn to identify important biochemical interactions between ligands and receptors. Besides, we demonstrate that the compatibility score is computed based only on conformation of small molecule, independent of its position and orientation in relation to the receptor. The proposed model was trained using known ligands and decoys in a Fully Flexible Receptor model of InhA-NADH complex (PDB ID: 1ENY), having achieved outstanding results.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-04T16:18:35Z
2017-03-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/7763
url http://tede2.pucrs.br/tede2/handle/tede/7763
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Informática
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Informática
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1850041286957989888