Neuro-symbolic automated design of fMRI paradigms

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Esper, Katherine Bianchini
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
RMf
Link de acesso: https://tede2.pucrs.br/tede2/handle/tede/10586
Resumo: Neuroimaging techniques have been widely used in recent decades to assess brain activation patterns for neuroscience. Task design is the most important challenge for neuroimaging studies to achieve the best modeling for assessing brain patterns within and across subjects. Specifically, functional magnetic resonance imaging (fMRI) experiments rely on the precise and effective paradigm design, selecting the best sequences of stimuli to activate specific brain regions. In this project, we propose to use Planning Domain Definition Language (PDDL+) to model fMRI paradigms so that neuroscientists can design neuroimaging paradigms in a declarative way. We develop an application of automated planning for neuroscience research and presurgical planning, resulting in and a tool for automatic stimuli generation for fMRI scans. The former should help to ensure an experimental design that allows the analysis of the brain regions that are interesting in the study. The latter should help surgeons select the correct stimuli for a presurgical non-invasive exploration of the cognitive functions that might be affected by debridement of brain lesions.
id P_RS_a51463bed60714afeb5f933dab5582e1
oai_identifier_str oai:tede2.pucrs.br:tede/10586
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Neuro-symbolic automated design of fMRI paradigmsArtificial IntelligenceNeuroimaginfMRIAutomated PlanningInteligência ArtificialNeuroimagemRMfPlanejamento AutomatizadoCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAONeuroimaging techniques have been widely used in recent decades to assess brain activation patterns for neuroscience. Task design is the most important challenge for neuroimaging studies to achieve the best modeling for assessing brain patterns within and across subjects. Specifically, functional magnetic resonance imaging (fMRI) experiments rely on the precise and effective paradigm design, selecting the best sequences of stimuli to activate specific brain regions. In this project, we propose to use Planning Domain Definition Language (PDDL+) to model fMRI paradigms so that neuroscientists can design neuroimaging paradigms in a declarative way. We develop an application of automated planning for neuroscience research and presurgical planning, resulting in and a tool for automatic stimuli generation for fMRI scans. The former should help to ensure an experimental design that allows the analysis of the brain regions that are interesting in the study. The latter should help surgeons select the correct stimuli for a presurgical non-invasive exploration of the cognitive functions that might be affected by debridement of brain lesions.As técnicas de neuroimagem têm sido amplamente utilizadas nas últimas décadas para avaliar os padrões de ativação do cérebro. O projeto de tarefas é um dos desafios mais importantes para os estudos de neuroimagem, para que seja possível obter a melhor modelagem para avaliar os padrões cerebrais de um sujeito e entre os sujeitos. Os experimentos de Ressonância Magnética funcional (RMf) dependem de um design de paradigmas preciso e eficaz, selecionando as melhores sequências de estímulos para ativar regiões cerebrais específicas. Neste projeto, propomos o uso de Planning Domain Definition Language (PDDL+) para modelar diferentes paradigmas e suas respectivas ativações cerebrais, resultando em uma ferramenta para geração automática de estímulos para exames de RMf. Desenvolvemos uma aplicação de planejamento automatizado para pesquisa neurocientífica e planejamento pré-cirúrgico. O primeiro deve ajudar a garantir um desenho experimental que permita a análise das regiões cerebrais de interesse do estudo. O último, deve ajudar os cirurgiões a selecionar os estímulos corretos para uma exploração pré-cirúrgica não invasiva das funções cognitivas que podem ser afetadas pelo desbridamento de lesões cerebrais.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoMeneguzzi, Felipe Rechhttp://lattes.cnpq.br/5973550650941724Esper, Katherine Bianchini2023-01-10T14:41:29Z2022-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://tede2.pucrs.br/tede2/handle/tede/10586enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2023-01-10T22:00:17Zoai:tede2.pucrs.br:tede/10586Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2023-01-10T22:00:17Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Neuro-symbolic automated design of fMRI paradigms
title Neuro-symbolic automated design of fMRI paradigms
spellingShingle Neuro-symbolic automated design of fMRI paradigms
Esper, Katherine Bianchini
Artificial Intelligence
Neuroimagin
fMRI
Automated Planning
Inteligência Artificial
Neuroimagem
RMf
Planejamento Automatizado
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Neuro-symbolic automated design of fMRI paradigms
title_full Neuro-symbolic automated design of fMRI paradigms
title_fullStr Neuro-symbolic automated design of fMRI paradigms
title_full_unstemmed Neuro-symbolic automated design of fMRI paradigms
title_sort Neuro-symbolic automated design of fMRI paradigms
author Esper, Katherine Bianchini
author_facet Esper, Katherine Bianchini
author_role author
dc.contributor.none.fl_str_mv Meneguzzi, Felipe Rech
http://lattes.cnpq.br/5973550650941724
dc.contributor.author.fl_str_mv Esper, Katherine Bianchini
dc.subject.por.fl_str_mv Artificial Intelligence
Neuroimagin
fMRI
Automated Planning
Inteligência Artificial
Neuroimagem
RMf
Planejamento Automatizado
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
topic Artificial Intelligence
Neuroimagin
fMRI
Automated Planning
Inteligência Artificial
Neuroimagem
RMf
Planejamento Automatizado
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description Neuroimaging techniques have been widely used in recent decades to assess brain activation patterns for neuroscience. Task design is the most important challenge for neuroimaging studies to achieve the best modeling for assessing brain patterns within and across subjects. Specifically, functional magnetic resonance imaging (fMRI) experiments rely on the precise and effective paradigm design, selecting the best sequences of stimuli to activate specific brain regions. In this project, we propose to use Planning Domain Definition Language (PDDL+) to model fMRI paradigms so that neuroscientists can design neuroimaging paradigms in a declarative way. We develop an application of automated planning for neuroscience research and presurgical planning, resulting in and a tool for automatic stimuli generation for fMRI scans. The former should help to ensure an experimental design that allows the analysis of the brain regions that are interesting in the study. The latter should help surgeons select the correct stimuli for a presurgical non-invasive exploration of the cognitive functions that might be affected by debridement of brain lesions.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-29
2023-01-10T14:41:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://tede2.pucrs.br/tede2/handle/tede/10586
url https://tede2.pucrs.br/tede2/handle/tede/10586
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1850041311398199296