Pattern detection strategy applied to crime investigation in IoT environments
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://tede2.pucrs.br/tede2/handle/tede/11631 |
Resumo: | The adoption of the Internet of Things (IoT) has brought many advantages, but it also presents challenges for the field of Digital Forensics. The heterogeneity of the data directly affects the investigative process in scenarios involving IoT applications. Through the analysis of a comprehensive and heterogeneous dataset collected from IoT devices, this study analyzes the use of machine learning algorithms to detect specific patterns to estimate the number of people in physical environments involving IoT devices, with the aim of helping in crime investigations. In this work, we discuss the use of Machine Learning approaches to enhance criminal investigations based on data collected from IoT environments. The experimental evaluation not only showcases the potential enhancement of Digital Forensics through the utilization of IoT data but also serves to emphasize the effectiveness of machine learning-based approaches in these environments. |
| id |
P_RS_d29cb997ee3086a17687c23015de4a87 |
|---|---|
| oai_identifier_str |
oai:tede2.pucrs.br:tede/11631 |
| network_acronym_str |
P_RS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository_id_str |
|
| spelling |
Pattern detection strategy applied to crime investigation in IoT environmentsEstratégia de detecção de padrões aplicada à investigação de crimes em ambientes IoTInternet of ThingsDigital ForensicsMachine LearningInternet das CoisasPerícia DigitalAprendizado de MáquinaCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOThe adoption of the Internet of Things (IoT) has brought many advantages, but it also presents challenges for the field of Digital Forensics. The heterogeneity of the data directly affects the investigative process in scenarios involving IoT applications. Through the analysis of a comprehensive and heterogeneous dataset collected from IoT devices, this study analyzes the use of machine learning algorithms to detect specific patterns to estimate the number of people in physical environments involving IoT devices, with the aim of helping in crime investigations. In this work, we discuss the use of Machine Learning approaches to enhance criminal investigations based on data collected from IoT environments. The experimental evaluation not only showcases the potential enhancement of Digital Forensics through the utilization of IoT data but also serves to emphasize the effectiveness of machine learning-based approaches in these environments.A adoção da Internet das Coisas (IoT) trouxe muitas vantagens, mas também apresenta desafios para o campo da Perícia Digital. A heterogeneidade dos dados afeta diretamente o processo investigativo em cenários que envolvem aplicações de IoT. Por meio da análise de um conjunto de dados heterogêneo e abrangente coletado de dispositivos IoT, este estudo analisa o uso de algoritmos de aprendizado de máquina para detectar padrões específicos e estimar o número de pessoas em ambientes físicos que envolvem dispositivos IoT, com o objetivo de auxiliar em investigações criminais. Os resultados destacam a capacidade dos modelos de Aprendizado de Máquina em identificar padrões relevantes e fornecer informações valiosas para investigações em ambientes de IoT, como casas inteligentes, escritórios inteligentes e edifícios inteligentes. Essas descobertas contribuem para o avanço da Perícia Digital e demonstram o potencial de abordagens baseadas em aprendizado de máquina na análise de dados de dispositivos IoT em contextos forenses.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoZorzo, Avelino Franciscohttp://lattes.cnpq.br/4315350764773182Deconto, Guilherme Dall'Agnol2025-05-27T15:48:10Z2024-03-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://tede2.pucrs.br/tede2/handle/tede/11631enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2025-05-27T23:00:26Zoai:tede2.pucrs.br:tede/11631Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2025-05-27T23:00:26Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
| dc.title.none.fl_str_mv |
Pattern detection strategy applied to crime investigation in IoT environments Estratégia de detecção de padrões aplicada à investigação de crimes em ambientes IoT |
| title |
Pattern detection strategy applied to crime investigation in IoT environments |
| spellingShingle |
Pattern detection strategy applied to crime investigation in IoT environments Deconto, Guilherme Dall'Agnol Internet of Things Digital Forensics Machine Learning Internet das Coisas Perícia Digital Aprendizado de Máquina CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| title_short |
Pattern detection strategy applied to crime investigation in IoT environments |
| title_full |
Pattern detection strategy applied to crime investigation in IoT environments |
| title_fullStr |
Pattern detection strategy applied to crime investigation in IoT environments |
| title_full_unstemmed |
Pattern detection strategy applied to crime investigation in IoT environments |
| title_sort |
Pattern detection strategy applied to crime investigation in IoT environments |
| author |
Deconto, Guilherme Dall'Agnol |
| author_facet |
Deconto, Guilherme Dall'Agnol |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Zorzo, Avelino Francisco http://lattes.cnpq.br/4315350764773182 |
| dc.contributor.author.fl_str_mv |
Deconto, Guilherme Dall'Agnol |
| dc.subject.por.fl_str_mv |
Internet of Things Digital Forensics Machine Learning Internet das Coisas Perícia Digital Aprendizado de Máquina CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| topic |
Internet of Things Digital Forensics Machine Learning Internet das Coisas Perícia Digital Aprendizado de Máquina CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| description |
The adoption of the Internet of Things (IoT) has brought many advantages, but it also presents challenges for the field of Digital Forensics. The heterogeneity of the data directly affects the investigative process in scenarios involving IoT applications. Through the analysis of a comprehensive and heterogeneous dataset collected from IoT devices, this study analyzes the use of machine learning algorithms to detect specific patterns to estimate the number of people in physical environments involving IoT devices, with the aim of helping in crime investigations. In this work, we discuss the use of Machine Learning approaches to enhance criminal investigations based on data collected from IoT environments. The experimental evaluation not only showcases the potential enhancement of Digital Forensics through the utilization of IoT data but also serves to emphasize the effectiveness of machine learning-based approaches in these environments. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-03-13 2025-05-27T15:48:10Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://tede2.pucrs.br/tede2/handle/tede/11631 |
| url |
https://tede2.pucrs.br/tede2/handle/tede/11631 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
| instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| instacron_str |
PUC_RS |
| institution |
PUC_RS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
| _version_ |
1850041318913343488 |