Evaluation of methods for taxonomic relation extraction from text

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Granada, Roger Leitzke
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Informática
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/7108
Resumo: Modern information systems are changing the idea of “data processing” to the idea of “concept processing”, meaning that instead of processing words, such systems process semantic concepts which carry meaning and share contexts with other concepts. Ontology is commonly used as a structure that captures the knowledge about a certain area via providing concepts and relations between them. Traditionally, concept hierarchies have been built manually by knowledge engineers or domain experts. However, the manual construction of a concept hierarchy suffers from several limitations such as its coverage and the enormous costs of extension and maintenance. Furthermore, keeping up with a hand-crafted concept hierarchy along with the evolution of domain knowledge is an overwhelming task, being necessary to build concept hierarchies automatically. The (semi-)automatic support in ontology development is usually referred to as ontology learning. The ontology learning from texts is usually divided in steps, going from concepts identification, passing through hierarchy and non-hierarchy relations detection and, seldom, axiom extraction. It is reasonable to say that among these steps the current frontier is in the establishment of concept hierarchies, since this is the backbone of ontologies and, therefore, a good concept hierarchy is already a valuable resource for many ontology applications. A concept hierarchy is represented with a tree-structured form with specialization/generalization relations between concepts, in which lower-level concepts are more specific while higher-level are more general. The automatic construction of concept hierarchies from texts is a complex task and since the 1980 decade a large number of works have been proposing approaches to better extract relations between concepts. These different proposals have never been contrasted against each other on the same set of data and across different languages. Such comparison is important to see whether they are complementary or incremental, also we can see whether they present different tendencies towards recall and precision, i.e., some can be very precise but with very low recall and others can achieve better recall but low precision. Another aspect concerns to the variation of results for different languages. This thesis evaluates these different methods on the basis of hierarchy metrics such as density and depth, and evaluation metrics such as Recall and Precision. The evaluation is performed over the same corpora, which consist of English and Portuguese parallel and comparable texts. Both automatic and manual evaluations are presented. The output of seven methods are evaluated automatically and the output of four methods are evaluated manually. Results shed light over the comprehensive set of methods that are the state of the art according to the literature in the area.
id P_RS_d7fc39d895802a2a7df9f9bc75d10727
oai_identifier_str oai:tede2.pucrs.br:tede/7108
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Evaluation of methods for taxonomic relation extraction from textAvaliação de métodos para extração automática de relações a partir de textosONTOLOGIAPROCESSAMENTO DA LINGUAGEM NATURALINFORMÁTICACIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOModern information systems are changing the idea of “data processing” to the idea of “concept processing”, meaning that instead of processing words, such systems process semantic concepts which carry meaning and share contexts with other concepts. Ontology is commonly used as a structure that captures the knowledge about a certain area via providing concepts and relations between them. Traditionally, concept hierarchies have been built manually by knowledge engineers or domain experts. However, the manual construction of a concept hierarchy suffers from several limitations such as its coverage and the enormous costs of extension and maintenance. Furthermore, keeping up with a hand-crafted concept hierarchy along with the evolution of domain knowledge is an overwhelming task, being necessary to build concept hierarchies automatically. The (semi-)automatic support in ontology development is usually referred to as ontology learning. The ontology learning from texts is usually divided in steps, going from concepts identification, passing through hierarchy and non-hierarchy relations detection and, seldom, axiom extraction. It is reasonable to say that among these steps the current frontier is in the establishment of concept hierarchies, since this is the backbone of ontologies and, therefore, a good concept hierarchy is already a valuable resource for many ontology applications. A concept hierarchy is represented with a tree-structured form with specialization/generalization relations between concepts, in which lower-level concepts are more specific while higher-level are more general. The automatic construction of concept hierarchies from texts is a complex task and since the 1980 decade a large number of works have been proposing approaches to better extract relations between concepts. These different proposals have never been contrasted against each other on the same set of data and across different languages. Such comparison is important to see whether they are complementary or incremental, also we can see whether they present different tendencies towards recall and precision, i.e., some can be very precise but with very low recall and others can achieve better recall but low precision. Another aspect concerns to the variation of results for different languages. This thesis evaluates these different methods on the basis of hierarchy metrics such as density and depth, and evaluation metrics such as Recall and Precision. The evaluation is performed over the same corpora, which consist of English and Portuguese parallel and comparable texts. Both automatic and manual evaluations are presented. The output of seven methods are evaluated automatically and the output of four methods are evaluated manually. Results shed light over the comprehensive set of methods that are the state of the art according to the literature in the area.Sistemas de informação modernos têm mudado a ideia “processamento de dados” para a ideia de “processamento de conceitos”, assim, ao invés de processarem palavras, tais sistemas fazem o processamento de conceitos que contêm ignificado e que compartilham contextos com outros contextos. Ontologias são normalmente utilizadas como uma estrutura que captura o conhecimento a cerca de uma certa área, provendo conceitos e relações entre tais conceitos. Tradicionalmente, hierarquias de conceitos são construídas manualmente por engenheiros do conhecimento ou especialistas do domínio. Entretanto, este tipo de construção sofre com diversas limitações, tais como, cobertura e o alto custo de extensão e manutenção. Assim, se faz necessária a construção de tais estruturas automaticamente. O suporte (semi-)automatico no desenvolvimento de ontologias é comumente referenciado como aprendizagem de ontologias e é normalmente dividido em etapas, como identificação de conceitos, detecção de relações hierarquicas e não hierarquicas, e extração de axiomas. É razoável dizer que entre tais passos a fronteira está no estabelecimento de hierarquias de conceitos, pois é a espinha dorsal das ontologias e, por consequência, uma boa hierarquia de conceitos é um recurso válido para várias aplicações de ontologias. Hierarquias de conceitos são representadas por estruturas em árvore com relacionamentos de especialização/generalização, onde conceitos nos níveis mais baixos são mais específicos e conceitos nos níveis mais altos são mais gerais. A construção automática de tais hierarquias é uma tarefa complexa e desde a década de 80 muitos trabalhos têm proposto melhores formas para fazer a extração de relações entre conceitos. Estas propostas nunca foram contrastadas usando um mesmo conjunto de dados. Tal comparação é importante para ver se os métodos são complementares ou incrementais, bem como se apresentam diferentes tendências em relação à precisão e abrangência, i.e., alguns podem ser bastante precisos e ter uma baixa abrangência enquanto outros têm uma abrangência melhor porém com uma baixa precisão. Outro aspecto refere-se à variação dos resultados em diferentes línguas. Esta tese avalia os métodos utilizando métricas de hierarquias como densidade e profundidade, e métricas de evaliação como precisão e abrangência. A avaliação é realizada utilizando o mesmo corpora, consistindo de textos paralelos e comparáveis em inglês e português. São realizadas avaliações automática e manual, sendo a saída de sete métodos avaliados automaticamente e quatro manualmente. Os resultados dão uma luz sobre a abrangência dos métodos que são utilizados no estado da arte de acordo com a literatura.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESPontifícia Universidade Católica do Rio Grande do SulFaculdade de InformáticaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoVieira, Renata451.334.330-34http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782140T7Aussenac-Gilles, NathalieSantos, Cássia Trojahn doshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4770599U0Granada, Roger Leitzke2016-12-26T16:34:57Z2015-09-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/7108enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2016-12-26T22:00:39Zoai:tede2.pucrs.br:tede/7108Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2016-12-26T22:00:39Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Evaluation of methods for taxonomic relation extraction from text
Avaliação de métodos para extração automática de relações a partir de textos
title Evaluation of methods for taxonomic relation extraction from text
spellingShingle Evaluation of methods for taxonomic relation extraction from text
Granada, Roger Leitzke
ONTOLOGIA
PROCESSAMENTO DA LINGUAGEM NATURAL
INFORMÁTICA
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Evaluation of methods for taxonomic relation extraction from text
title_full Evaluation of methods for taxonomic relation extraction from text
title_fullStr Evaluation of methods for taxonomic relation extraction from text
title_full_unstemmed Evaluation of methods for taxonomic relation extraction from text
title_sort Evaluation of methods for taxonomic relation extraction from text
author Granada, Roger Leitzke
author_facet Granada, Roger Leitzke
author_role author
dc.contributor.none.fl_str_mv Vieira, Renata
451.334.330-34
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782140T7
Aussenac-Gilles, Nathalie
Santos, Cássia Trojahn dos
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4770599U0
dc.contributor.author.fl_str_mv Granada, Roger Leitzke
dc.subject.por.fl_str_mv ONTOLOGIA
PROCESSAMENTO DA LINGUAGEM NATURAL
INFORMÁTICA
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic ONTOLOGIA
PROCESSAMENTO DA LINGUAGEM NATURAL
INFORMÁTICA
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Modern information systems are changing the idea of “data processing” to the idea of “concept processing”, meaning that instead of processing words, such systems process semantic concepts which carry meaning and share contexts with other concepts. Ontology is commonly used as a structure that captures the knowledge about a certain area via providing concepts and relations between them. Traditionally, concept hierarchies have been built manually by knowledge engineers or domain experts. However, the manual construction of a concept hierarchy suffers from several limitations such as its coverage and the enormous costs of extension and maintenance. Furthermore, keeping up with a hand-crafted concept hierarchy along with the evolution of domain knowledge is an overwhelming task, being necessary to build concept hierarchies automatically. The (semi-)automatic support in ontology development is usually referred to as ontology learning. The ontology learning from texts is usually divided in steps, going from concepts identification, passing through hierarchy and non-hierarchy relations detection and, seldom, axiom extraction. It is reasonable to say that among these steps the current frontier is in the establishment of concept hierarchies, since this is the backbone of ontologies and, therefore, a good concept hierarchy is already a valuable resource for many ontology applications. A concept hierarchy is represented with a tree-structured form with specialization/generalization relations between concepts, in which lower-level concepts are more specific while higher-level are more general. The automatic construction of concept hierarchies from texts is a complex task and since the 1980 decade a large number of works have been proposing approaches to better extract relations between concepts. These different proposals have never been contrasted against each other on the same set of data and across different languages. Such comparison is important to see whether they are complementary or incremental, also we can see whether they present different tendencies towards recall and precision, i.e., some can be very precise but with very low recall and others can achieve better recall but low precision. Another aspect concerns to the variation of results for different languages. This thesis evaluates these different methods on the basis of hierarchy metrics such as density and depth, and evaluation metrics such as Recall and Precision. The evaluation is performed over the same corpora, which consist of English and Portuguese parallel and comparable texts. Both automatic and manual evaluations are presented. The output of seven methods are evaluated automatically and the output of four methods are evaluated manually. Results shed light over the comprehensive set of methods that are the state of the art according to the literature in the area.
publishDate 2015
dc.date.none.fl_str_mv 2015-09-28
2016-12-26T16:34:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/7108
url http://tede2.pucrs.br/tede2/handle/tede/7108
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Informática
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Faculdade de Informática
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1850041281722449920