Gan-based realistic face pose synthesis

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Souza, Douglas Matos de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/9250
Resumo: Em visão computacional, o processamento de imagens de faces vem acompanhado de uma série de complexidades. Exemplos incluem a variação de pose, luz, expressão facial, e maquiagem. Embora todos os aspectos sejam considerados importantes, o que apresenta o maior impacto em sistemas de visão computacional que trabalham com faces é a variação de pose. Em reconhecimento facial, por exemplo, há muito tempo em que se deseja um método capaz de transformar imagens de faces para a mesma pose, geralmente, uma visão frontal, de modo a facilitar o reconhecimento. A síntese de diferentes visões de um rosto é um grande desafio, principalmente porque em visões não-frontais há uma perda de informação quando um lado da face obstrui o outro. Vários métodos para resolver a síntese de pose de faces foram propostos, mas os resultados geralmente deixam a desejar detalhes realísticos. Neste trabalho, nós apresentamos novos métodos que aprimoram os resultados em relação aos anteriores, apresentando uma maior qualidade na síntese de poses de faces.
id P_RS_d8050f687638987da9da56ad505cea12
oai_identifier_str oai:tede2.pucrs.br:tede/9250
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Gan-based realistic face pose synthesisSíntese de poses de facesAprendizado de máquinaAprendizado profundoVisão computacionalRedes geradoras adversáriasFace pose synthesisMachine learningDeep learningComputer visionGenerative adversarial networksCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOEm visão computacional, o processamento de imagens de faces vem acompanhado de uma série de complexidades. Exemplos incluem a variação de pose, luz, expressão facial, e maquiagem. Embora todos os aspectos sejam considerados importantes, o que apresenta o maior impacto em sistemas de visão computacional que trabalham com faces é a variação de pose. Em reconhecimento facial, por exemplo, há muito tempo em que se deseja um método capaz de transformar imagens de faces para a mesma pose, geralmente, uma visão frontal, de modo a facilitar o reconhecimento. A síntese de diferentes visões de um rosto é um grande desafio, principalmente porque em visões não-frontais há uma perda de informação quando um lado da face obstrui o outro. Vários métodos para resolver a síntese de pose de faces foram propostos, mas os resultados geralmente deixam a desejar detalhes realísticos. Neste trabalho, nós apresentamos novos métodos que aprimoram os resultados em relação aos anteriores, apresentando uma maior qualidade na síntese de poses de faces.In computer vision, processing face images are accompanied by a series of complexities. Examples include variation of pose, light, face expression, and make up. Although all aspects are considered important, the one that impacts the most face-related computer vision systems is pose. In face recognition, for example, it has been long desired to have a method capable of bringing faces to the same pose, usually a frontal view, in order to ease recognition. Synthesizing different views of a face is a great challenge, mostly because in non-frontal face images there are loss of information when one side of the face occludes the other (also known as self-occlusion). Several methods to address face pose synthesis were proposed, but the results usually miss a realistic finish. In this work, we present novel methods that improve on the previous ones, showing higher synthesis quality.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoRuiz, Duncan Dubugras Alcobahttp://lattes.cnpq.br/8250832800932125Souza, Douglas Matos de2020-09-01T17:45:18Z2018-08-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/9250enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2020-09-01T23:00:08Zoai:tede2.pucrs.br:tede/9250Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2020-09-01T23:00:08Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Gan-based realistic face pose synthesis
title Gan-based realistic face pose synthesis
spellingShingle Gan-based realistic face pose synthesis
Souza, Douglas Matos de
Síntese de poses de faces
Aprendizado de máquina
Aprendizado profundo
Visão computacional
Redes geradoras adversárias
Face pose synthesis
Machine learning
Deep learning
Computer vision
Generative adversarial networks
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Gan-based realistic face pose synthesis
title_full Gan-based realistic face pose synthesis
title_fullStr Gan-based realistic face pose synthesis
title_full_unstemmed Gan-based realistic face pose synthesis
title_sort Gan-based realistic face pose synthesis
author Souza, Douglas Matos de
author_facet Souza, Douglas Matos de
author_role author
dc.contributor.none.fl_str_mv Ruiz, Duncan Dubugras Alcoba
http://lattes.cnpq.br/8250832800932125
dc.contributor.author.fl_str_mv Souza, Douglas Matos de
dc.subject.por.fl_str_mv Síntese de poses de faces
Aprendizado de máquina
Aprendizado profundo
Visão computacional
Redes geradoras adversárias
Face pose synthesis
Machine learning
Deep learning
Computer vision
Generative adversarial networks
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
topic Síntese de poses de faces
Aprendizado de máquina
Aprendizado profundo
Visão computacional
Redes geradoras adversárias
Face pose synthesis
Machine learning
Deep learning
Computer vision
Generative adversarial networks
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description Em visão computacional, o processamento de imagens de faces vem acompanhado de uma série de complexidades. Exemplos incluem a variação de pose, luz, expressão facial, e maquiagem. Embora todos os aspectos sejam considerados importantes, o que apresenta o maior impacto em sistemas de visão computacional que trabalham com faces é a variação de pose. Em reconhecimento facial, por exemplo, há muito tempo em que se deseja um método capaz de transformar imagens de faces para a mesma pose, geralmente, uma visão frontal, de modo a facilitar o reconhecimento. A síntese de diferentes visões de um rosto é um grande desafio, principalmente porque em visões não-frontais há uma perda de informação quando um lado da face obstrui o outro. Vários métodos para resolver a síntese de pose de faces foram propostos, mas os resultados geralmente deixam a desejar detalhes realísticos. Neste trabalho, nós apresentamos novos métodos que aprimoram os resultados em relação aos anteriores, apresentando uma maior qualidade na síntese de poses de faces.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-06
2020-09-01T17:45:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/9250
url http://tede2.pucrs.br/tede2/handle/tede/9250
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1850041300696432640