Gan-based realistic face pose synthesis
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://tede2.pucrs.br/tede2/handle/tede/9250 |
Resumo: | Em visão computacional, o processamento de imagens de faces vem acompanhado de uma série de complexidades. Exemplos incluem a variação de pose, luz, expressão facial, e maquiagem. Embora todos os aspectos sejam considerados importantes, o que apresenta o maior impacto em sistemas de visão computacional que trabalham com faces é a variação de pose. Em reconhecimento facial, por exemplo, há muito tempo em que se deseja um método capaz de transformar imagens de faces para a mesma pose, geralmente, uma visão frontal, de modo a facilitar o reconhecimento. A síntese de diferentes visões de um rosto é um grande desafio, principalmente porque em visões não-frontais há uma perda de informação quando um lado da face obstrui o outro. Vários métodos para resolver a síntese de pose de faces foram propostos, mas os resultados geralmente deixam a desejar detalhes realísticos. Neste trabalho, nós apresentamos novos métodos que aprimoram os resultados em relação aos anteriores, apresentando uma maior qualidade na síntese de poses de faces. |
| id |
P_RS_d8050f687638987da9da56ad505cea12 |
|---|---|
| oai_identifier_str |
oai:tede2.pucrs.br:tede/9250 |
| network_acronym_str |
P_RS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository_id_str |
|
| spelling |
Gan-based realistic face pose synthesisSíntese de poses de facesAprendizado de máquinaAprendizado profundoVisão computacionalRedes geradoras adversáriasFace pose synthesisMachine learningDeep learningComputer visionGenerative adversarial networksCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOEm visão computacional, o processamento de imagens de faces vem acompanhado de uma série de complexidades. Exemplos incluem a variação de pose, luz, expressão facial, e maquiagem. Embora todos os aspectos sejam considerados importantes, o que apresenta o maior impacto em sistemas de visão computacional que trabalham com faces é a variação de pose. Em reconhecimento facial, por exemplo, há muito tempo em que se deseja um método capaz de transformar imagens de faces para a mesma pose, geralmente, uma visão frontal, de modo a facilitar o reconhecimento. A síntese de diferentes visões de um rosto é um grande desafio, principalmente porque em visões não-frontais há uma perda de informação quando um lado da face obstrui o outro. Vários métodos para resolver a síntese de pose de faces foram propostos, mas os resultados geralmente deixam a desejar detalhes realísticos. Neste trabalho, nós apresentamos novos métodos que aprimoram os resultados em relação aos anteriores, apresentando uma maior qualidade na síntese de poses de faces.In computer vision, processing face images are accompanied by a series of complexities. Examples include variation of pose, light, face expression, and make up. Although all aspects are considered important, the one that impacts the most face-related computer vision systems is pose. In face recognition, for example, it has been long desired to have a method capable of bringing faces to the same pose, usually a frontal view, in order to ease recognition. Synthesizing different views of a face is a great challenge, mostly because in non-frontal face images there are loss of information when one side of the face occludes the other (also known as self-occlusion). Several methods to address face pose synthesis were proposed, but the results usually miss a realistic finish. In this work, we present novel methods that improve on the previous ones, showing higher synthesis quality.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoRuiz, Duncan Dubugras Alcobahttp://lattes.cnpq.br/8250832800932125Souza, Douglas Matos de2020-09-01T17:45:18Z2018-08-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/9250enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2020-09-01T23:00:08Zoai:tede2.pucrs.br:tede/9250Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2020-09-01T23:00:08Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
| dc.title.none.fl_str_mv |
Gan-based realistic face pose synthesis |
| title |
Gan-based realistic face pose synthesis |
| spellingShingle |
Gan-based realistic face pose synthesis Souza, Douglas Matos de Síntese de poses de faces Aprendizado de máquina Aprendizado profundo Visão computacional Redes geradoras adversárias Face pose synthesis Machine learning Deep learning Computer vision Generative adversarial networks CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| title_short |
Gan-based realistic face pose synthesis |
| title_full |
Gan-based realistic face pose synthesis |
| title_fullStr |
Gan-based realistic face pose synthesis |
| title_full_unstemmed |
Gan-based realistic face pose synthesis |
| title_sort |
Gan-based realistic face pose synthesis |
| author |
Souza, Douglas Matos de |
| author_facet |
Souza, Douglas Matos de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Ruiz, Duncan Dubugras Alcoba http://lattes.cnpq.br/8250832800932125 |
| dc.contributor.author.fl_str_mv |
Souza, Douglas Matos de |
| dc.subject.por.fl_str_mv |
Síntese de poses de faces Aprendizado de máquina Aprendizado profundo Visão computacional Redes geradoras adversárias Face pose synthesis Machine learning Deep learning Computer vision Generative adversarial networks CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| topic |
Síntese de poses de faces Aprendizado de máquina Aprendizado profundo Visão computacional Redes geradoras adversárias Face pose synthesis Machine learning Deep learning Computer vision Generative adversarial networks CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| description |
Em visão computacional, o processamento de imagens de faces vem acompanhado de uma série de complexidades. Exemplos incluem a variação de pose, luz, expressão facial, e maquiagem. Embora todos os aspectos sejam considerados importantes, o que apresenta o maior impacto em sistemas de visão computacional que trabalham com faces é a variação de pose. Em reconhecimento facial, por exemplo, há muito tempo em que se deseja um método capaz de transformar imagens de faces para a mesma pose, geralmente, uma visão frontal, de modo a facilitar o reconhecimento. A síntese de diferentes visões de um rosto é um grande desafio, principalmente porque em visões não-frontais há uma perda de informação quando um lado da face obstrui o outro. Vários métodos para resolver a síntese de pose de faces foram propostos, mas os resultados geralmente deixam a desejar detalhes realísticos. Neste trabalho, nós apresentamos novos métodos que aprimoram os resultados em relação aos anteriores, apresentando uma maior qualidade na síntese de poses de faces. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-08-06 2020-09-01T17:45:18Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://tede2.pucrs.br/tede2/handle/tede/9250 |
| url |
http://tede2.pucrs.br/tede2/handle/tede/9250 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
| instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| instacron_str |
PUC_RS |
| institution |
PUC_RS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
| _version_ |
1850041300696432640 |