Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://tede2.pucrs.br/tede2/handle/tede/8312 |
Resumo: | A predição de falhas de software é uma parte significativa da garantia de qualidade do software e é normalmente utilizada para detectar módulos propensos a falhar baseados em dados coletados após o processo de desenvolvimento do projeto. Diversas técnicas de aprendizado de máquina têm sido propostas para geração de modelos preditivos a partir da coleta dos dados, porém nenhuma se tornou a solução padrão devido as especificidades de cada projeto. Por isso, a hipótese levantada por este trabalho é que recomendar algoritmos de aprendizado de máquina para cada projeto é mais importante e útil do que o desenvolvimento de um único algoritmo de aprendizado de máquina a ser utilizado em qualquer projeto. Para alcançar este objetivo, propõe-se nesta dissertação um framework para recomendar algoritmos de aprendizado de máquina capaz de identificar automaticamente o algoritmo mais adequado para aquele projeto específico. A solução, chamada FMA-PFS, faz uso da técnica de meta-aprendizado, a fim de aprender o melhor algoritmo para um projeto em particular. Os resultados mostram que o framework FMA-PFS recomenda tanto o melhor algoritmo, quanto o melhor ranking de algoritmos no contexto de predição de falhas de software. |
| id |
P_RS_e85034f997308f04814cf86f783fd1c9 |
|---|---|
| oai_identifier_str |
oai:tede2.pucrs.br:tede/8312 |
| network_acronym_str |
P_RS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository_id_str |
|
| spelling |
Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizadoPredição de Falhas de SoftwareAprendizado de MáquinaMeta-AprendizadoSoftware Fault PredictionMachine LearningMetalearningCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOA predição de falhas de software é uma parte significativa da garantia de qualidade do software e é normalmente utilizada para detectar módulos propensos a falhar baseados em dados coletados após o processo de desenvolvimento do projeto. Diversas técnicas de aprendizado de máquina têm sido propostas para geração de modelos preditivos a partir da coleta dos dados, porém nenhuma se tornou a solução padrão devido as especificidades de cada projeto. Por isso, a hipótese levantada por este trabalho é que recomendar algoritmos de aprendizado de máquina para cada projeto é mais importante e útil do que o desenvolvimento de um único algoritmo de aprendizado de máquina a ser utilizado em qualquer projeto. Para alcançar este objetivo, propõe-se nesta dissertação um framework para recomendar algoritmos de aprendizado de máquina capaz de identificar automaticamente o algoritmo mais adequado para aquele projeto específico. A solução, chamada FMA-PFS, faz uso da técnica de meta-aprendizado, a fim de aprender o melhor algoritmo para um projeto em particular. Os resultados mostram que o framework FMA-PFS recomenda tanto o melhor algoritmo, quanto o melhor ranking de algoritmos no contexto de predição de falhas de software.Software fault prediction is a significant part of software quality assurance and it is commonly used to detect faulty software modules based on software measurement data. Several machine learning based approaches have been proposed for generating predictive models from collected data, although none has become standard given the specificities of each software project. Hence, we believe that recommending the best algorithm for each project is much more important and useful than developing a single algorithm for being used in any project. For achieving that goal, we propose in this dissertation a novel framework for recommending machine learning algorithms that is capable of automatically identifying the most suitable algorithm according to the software project that is being considered. Our solution, namely FMA-PFS, makes use of the metalearning paradigm in order to learn the best learner for a particular project. Results show that the FMA-PFS framework provides both the best single algorithm recommendation and also the best ranking recommendation for the software fault prediction problem.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoBarros, Rodrigo Coelhohttp://lattes.cnpq.br/8172124241767828Alves, Luciano2018-10-09T16:43:56Z2016-09-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/8312porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2018-10-09T23:01:13Zoai:tede2.pucrs.br:tede/8312Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2018-10-09T23:01:13Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false |
| dc.title.none.fl_str_mv |
Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado |
| title |
Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado |
| spellingShingle |
Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado Alves, Luciano Predição de Falhas de Software Aprendizado de Máquina Meta-Aprendizado Software Fault Prediction Machine Learning Metalearning CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| title_short |
Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado |
| title_full |
Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado |
| title_fullStr |
Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado |
| title_full_unstemmed |
Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado |
| title_sort |
Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado |
| author |
Alves, Luciano |
| author_facet |
Alves, Luciano |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Barros, Rodrigo Coelho http://lattes.cnpq.br/8172124241767828 |
| dc.contributor.author.fl_str_mv |
Alves, Luciano |
| dc.subject.por.fl_str_mv |
Predição de Falhas de Software Aprendizado de Máquina Meta-Aprendizado Software Fault Prediction Machine Learning Metalearning CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| topic |
Predição de Falhas de Software Aprendizado de Máquina Meta-Aprendizado Software Fault Prediction Machine Learning Metalearning CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| description |
A predição de falhas de software é uma parte significativa da garantia de qualidade do software e é normalmente utilizada para detectar módulos propensos a falhar baseados em dados coletados após o processo de desenvolvimento do projeto. Diversas técnicas de aprendizado de máquina têm sido propostas para geração de modelos preditivos a partir da coleta dos dados, porém nenhuma se tornou a solução padrão devido as especificidades de cada projeto. Por isso, a hipótese levantada por este trabalho é que recomendar algoritmos de aprendizado de máquina para cada projeto é mais importante e útil do que o desenvolvimento de um único algoritmo de aprendizado de máquina a ser utilizado em qualquer projeto. Para alcançar este objetivo, propõe-se nesta dissertação um framework para recomendar algoritmos de aprendizado de máquina capaz de identificar automaticamente o algoritmo mais adequado para aquele projeto específico. A solução, chamada FMA-PFS, faz uso da técnica de meta-aprendizado, a fim de aprender o melhor algoritmo para um projeto em particular. Os resultados mostram que o framework FMA-PFS recomenda tanto o melhor algoritmo, quanto o melhor ranking de algoritmos no contexto de predição de falhas de software. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-09-23 2018-10-09T16:43:56Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://tede2.pucrs.br/tede2/handle/tede/8312 |
| url |
http://tede2.pucrs.br/tede2/handle/tede/8312 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica Brasil PUCRS Programa de Pós-Graduação em Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) instacron:PUC_RS |
| instname_str |
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| instacron_str |
PUC_RS |
| institution |
PUC_RS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| collection |
Biblioteca Digital de Teses e Dissertações da PUC_RS |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) |
| repository.mail.fl_str_mv |
biblioteca.central@pucrs.br|| |
| _version_ |
1850041291927191552 |