Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Alves, Luciano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/8312
Resumo: A predição de falhas de software é uma parte significativa da garantia de qualidade do software e é normalmente utilizada para detectar módulos propensos a falhar baseados em dados coletados após o processo de desenvolvimento do projeto. Diversas técnicas de aprendizado de máquina têm sido propostas para geração de modelos preditivos a partir da coleta dos dados, porém nenhuma se tornou a solução padrão devido as especificidades de cada projeto. Por isso, a hipótese levantada por este trabalho é que recomendar algoritmos de aprendizado de máquina para cada projeto é mais importante e útil do que o desenvolvimento de um único algoritmo de aprendizado de máquina a ser utilizado em qualquer projeto. Para alcançar este objetivo, propõe-se nesta dissertação um framework para recomendar algoritmos de aprendizado de máquina capaz de identificar automaticamente o algoritmo mais adequado para aquele projeto específico. A solução, chamada FMA-PFS, faz uso da técnica de meta-aprendizado, a fim de aprender o melhor algoritmo para um projeto em particular. Os resultados mostram que o framework FMA-PFS recomenda tanto o melhor algoritmo, quanto o melhor ranking de algoritmos no contexto de predição de falhas de software.
id P_RS_e85034f997308f04814cf86f783fd1c9
oai_identifier_str oai:tede2.pucrs.br:tede/8312
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizadoPredição de Falhas de SoftwareAprendizado de MáquinaMeta-AprendizadoSoftware Fault PredictionMachine LearningMetalearningCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOA predição de falhas de software é uma parte significativa da garantia de qualidade do software e é normalmente utilizada para detectar módulos propensos a falhar baseados em dados coletados após o processo de desenvolvimento do projeto. Diversas técnicas de aprendizado de máquina têm sido propostas para geração de modelos preditivos a partir da coleta dos dados, porém nenhuma se tornou a solução padrão devido as especificidades de cada projeto. Por isso, a hipótese levantada por este trabalho é que recomendar algoritmos de aprendizado de máquina para cada projeto é mais importante e útil do que o desenvolvimento de um único algoritmo de aprendizado de máquina a ser utilizado em qualquer projeto. Para alcançar este objetivo, propõe-se nesta dissertação um framework para recomendar algoritmos de aprendizado de máquina capaz de identificar automaticamente o algoritmo mais adequado para aquele projeto específico. A solução, chamada FMA-PFS, faz uso da técnica de meta-aprendizado, a fim de aprender o melhor algoritmo para um projeto em particular. Os resultados mostram que o framework FMA-PFS recomenda tanto o melhor algoritmo, quanto o melhor ranking de algoritmos no contexto de predição de falhas de software.Software fault prediction is a significant part of software quality assurance and it is commonly used to detect faulty software modules based on software measurement data. Several machine learning based approaches have been proposed for generating predictive models from collected data, although none has become standard given the specificities of each software project. Hence, we believe that recommending the best algorithm for each project is much more important and useful than developing a single algorithm for being used in any project. For achieving that goal, we propose in this dissertation a novel framework for recommending machine learning algorithms that is capable of automatically identifying the most suitable algorithm according to the software project that is being considered. Our solution, namely FMA-PFS, makes use of the metalearning paradigm in order to learn the best learner for a particular project. Results show that the FMA-PFS framework provides both the best single algorithm recommendation and also the best ranking recommendation for the software fault prediction problem.Pontifícia Universidade Católica do Rio Grande do SulEscola PolitécnicaBrasilPUCRSPrograma de Pós-Graduação em Ciência da ComputaçãoBarros, Rodrigo Coelhohttp://lattes.cnpq.br/8172124241767828Alves, Luciano2018-10-09T16:43:56Z2016-09-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://tede2.pucrs.br/tede2/handle/tede/8312porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RS2018-10-09T23:01:13Zoai:tede2.pucrs.br:tede/8312Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2018-10-09T23:01:13Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.none.fl_str_mv Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado
title Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado
spellingShingle Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado
Alves, Luciano
Predição de Falhas de Software
Aprendizado de Máquina
Meta-Aprendizado
Software Fault Prediction
Machine Learning
Metalearning
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado
title_full Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado
title_fullStr Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado
title_full_unstemmed Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado
title_sort Recomendação de algoritmos de aprendizado de máquina para predição de falhas de software por meio de meta-aprendizado
author Alves, Luciano
author_facet Alves, Luciano
author_role author
dc.contributor.none.fl_str_mv Barros, Rodrigo Coelho
http://lattes.cnpq.br/8172124241767828
dc.contributor.author.fl_str_mv Alves, Luciano
dc.subject.por.fl_str_mv Predição de Falhas de Software
Aprendizado de Máquina
Meta-Aprendizado
Software Fault Prediction
Machine Learning
Metalearning
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
topic Predição de Falhas de Software
Aprendizado de Máquina
Meta-Aprendizado
Software Fault Prediction
Machine Learning
Metalearning
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description A predição de falhas de software é uma parte significativa da garantia de qualidade do software e é normalmente utilizada para detectar módulos propensos a falhar baseados em dados coletados após o processo de desenvolvimento do projeto. Diversas técnicas de aprendizado de máquina têm sido propostas para geração de modelos preditivos a partir da coleta dos dados, porém nenhuma se tornou a solução padrão devido as especificidades de cada projeto. Por isso, a hipótese levantada por este trabalho é que recomendar algoritmos de aprendizado de máquina para cada projeto é mais importante e útil do que o desenvolvimento de um único algoritmo de aprendizado de máquina a ser utilizado em qualquer projeto. Para alcançar este objetivo, propõe-se nesta dissertação um framework para recomendar algoritmos de aprendizado de máquina capaz de identificar automaticamente o algoritmo mais adequado para aquele projeto específico. A solução, chamada FMA-PFS, faz uso da técnica de meta-aprendizado, a fim de aprender o melhor algoritmo para um projeto em particular. Os resultados mostram que o framework FMA-PFS recomenda tanto o melhor algoritmo, quanto o melhor ranking de algoritmos no contexto de predição de falhas de software.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-23
2018-10-09T16:43:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/8312
url http://tede2.pucrs.br/tede2/handle/tede/8312
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
Escola Politécnica
Brasil
PUCRS
Programa de Pós-Graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1850041291927191552