Modelo Weibull modificado de longa duração

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Oliveira, Cleyton Zanardo de
Orientador(a): Louzada Neto, Francisco lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/8966
Resumo: When a group of patients is monitored until a pre-established date for observation of the recurrence time of an event, it is possible that, at the end of the monitoring period, a parcel of such group has not yet suffered the event of interest. When that happens, even if the period is extended, there is evidence that an appropriate model for the theoretical survival function of the time until the event occurs would be one model able to bear this kind of data. This class of long duration models will be defined because the form presented by the nonparametric estimation of hazard function in this type of study indicates that the model should be flexible to allow such function to be increasing, decreasing, constant or U-shaped. In this report, we present the long duration modified Weibull model (LDMW) as a proposal to contemplate the issues in the medicine area. The LDMW model has a flexible hazard curve, which enables adjustment when the hazard is decreasing, increasing, U-shaped, unimodal, initially decreasing and posteriorly unimodal and constant. The report also particularizes models already known in the literature that contemplate long duration, such as the long duration Weibull (LDW), long duration Exponential (LDE) and short duration models, such as the modified Weibull (MW), Weibull and Exponential. The simulations showed that the odds of coverage reach the nominal probability of 95% for moderately to big sized samples, that the LDMW p model parameters estimation is costless when compared to the MW and that the selection criteria of the AIC and BIC models are not adequate to discriminate the LDMW model adjustment when compared to the LDW model adjustment for small or moderately sized samples. The LDMW model and its particular cases were adjusted into two sets of real data considering the Classic and Bayesian Inference. The first data set is about the time until the seroreversion of children born from HIV-positive mothers and the second data set is about the recurrence time of breast cancer in women.
id SCAR_050d0ceb00dff4ea678e056980b1c956
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/8966
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Oliveira, Cleyton Zanardo deLouzada Neto, Franciscohttp://lattes.cnpq.br/0994050156415890Perdoná, Gleici da Silva Castrohttp://lattes.cnpq.br/0745160064860746http://lattes.cnpq.br/2326704083746518641c8ca8-4648-469d-b9f2-3d5b6ef079822017-08-09T17:23:14Z2017-08-09T17:23:14Z2011-12-07OLIVEIRA, Cleyton Zanardo de. Modelo Weibull modificado de longa duração. 2011. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2011. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8966.https://repositorio.ufscar.br/handle/20.500.14289/8966When a group of patients is monitored until a pre-established date for observation of the recurrence time of an event, it is possible that, at the end of the monitoring period, a parcel of such group has not yet suffered the event of interest. When that happens, even if the period is extended, there is evidence that an appropriate model for the theoretical survival function of the time until the event occurs would be one model able to bear this kind of data. This class of long duration models will be defined because the form presented by the nonparametric estimation of hazard function in this type of study indicates that the model should be flexible to allow such function to be increasing, decreasing, constant or U-shaped. In this report, we present the long duration modified Weibull model (LDMW) as a proposal to contemplate the issues in the medicine area. The LDMW model has a flexible hazard curve, which enables adjustment when the hazard is decreasing, increasing, U-shaped, unimodal, initially decreasing and posteriorly unimodal and constant. The report also particularizes models already known in the literature that contemplate long duration, such as the long duration Weibull (LDW), long duration Exponential (LDE) and short duration models, such as the modified Weibull (MW), Weibull and Exponential. The simulations showed that the odds of coverage reach the nominal probability of 95% for moderately to big sized samples, that the LDMW p model parameters estimation is costless when compared to the MW and that the selection criteria of the AIC and BIC models are not adequate to discriminate the LDMW model adjustment when compared to the LDW model adjustment for small or moderately sized samples. The LDMW model and its particular cases were adjusted into two sets of real data considering the Classic and Bayesian Inference. The first data set is about the time until the seroreversion of children born from HIV-positive mothers and the second data set is about the recurrence time of breast cancer in women.Quando um grupo de pacientes é seguido até uma data pré-estabelecida, para a observação do tempo até a ocorrência de um evento, pode acontecer que, na data de término do acompanhamento, uma parcela do grupo não tenha sofrido o evento de interesse. Quando ocorre, ainda que se estenda o prazo, existem indícios de que um modelo adequado para a função de sobrevivência teórica do tempo até a ocorrência do evento seja um modelo que comporte esse tipo de dados. Será definida essa classe de modelos de longa duração, pois a forma apresentada pela estimativa não paramétrica da função de risco, nesse tipo de estudo, indica que o modelo deve ser flexível no sentido de permitir que a função de risco seja uma função crescente, decrescente, constante ou em forma de U. Nesta dissertação, apresenta-se o modelo Weibull modificado de longa duração (WMLD) como proposta para contemplar os problemas na área médica. O modelo WMLD possui curva de risco flexível, possibilitando o ajuste quando há o risco decrescente, crescente, forma de U, unimodal, inicialmente decrescente e, posteriormente, descrevendo forma unimodal e constante. Particulariza modelos já conhecidos na literatura que contemplam a longa duração como o Weibull de longa duração (WLD), exponencial de longa duração (ELD) e modelos de curta duração, como Weibull modificado (WM), Weibull e exponencial. As simulações feitas mostraram que as probabilidades de cobertura atingem a probabilidade nominal de 95% para amostras moderadas a grandes, que não existe custo de estimação do parâmetro p do modelo WMLD, quando comparado com o WLD, e que os critérios de seleção de modelos AIC e BIC não são adequados para discriminar o ajuste do modelo WMLD comparado com o ajuste do modelo WLD, para tamanhos de amostras pequenos ou moderados. Ajustou-se o modelo WMLD e seus casos particulares em dois conjuntos de dados reais, considerando a inferência clássica e a bayesiana. O primeiro conjunto de dados trata-se do tempo até a sororreversão de crianças que nasceram de mães portadoras do vírus HIV e o segundo trata-se do tempo até a recidiva em mulheres com câncer de mama.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Estatística - PPGEsUFSCarWeibull modificado de longa duraçãoModelos de longa duraçãoModelos família WeibullAjuste com covariáveis para modelos de longa duraçãoModified long duration WeibullLong duration modelsWeibull family modelsAdjustment with covariables for long duration modelsCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAModelo Weibull modificado de longa duraçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600d0f3b31a-38c4-4c28-aa5b-837ad377108einfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissCZO.pdfDissCZO.pdfapplication/pdf1359694https://repositorio.ufscar.br/bitstreams/2833fbcc-0874-4a3f-84f2-aa7e3d1116a1/download90de19ac8dc5ae4c2ad7e286ab945d9bMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/8c270cc2-016a-4372-860a-0fd8aea4e430/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTDissCZO.pdf.txtDissCZO.pdf.txtExtracted texttext/plain149718https://repositorio.ufscar.br/bitstreams/5a38aefc-4d8a-4143-8648-37369d077539/download6604138cc3c0745d6fa1d8f7ec2bf2faMD55falseAnonymousREADTHUMBNAILDissCZO.pdf.jpgDissCZO.pdf.jpgIM Thumbnailimage/jpeg4578https://repositorio.ufscar.br/bitstreams/15bf6603-30dc-4120-8c4a-d5c5abcd5dad/downloadc4c8274f8582910e3779fed9eb12bb94MD56falseAnonymousREAD20.500.14289/89662025-02-05 17:36:48.708Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/8966https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T20:36:48Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.por.fl_str_mv Modelo Weibull modificado de longa duração
title Modelo Weibull modificado de longa duração
spellingShingle Modelo Weibull modificado de longa duração
Oliveira, Cleyton Zanardo de
Weibull modificado de longa duração
Modelos de longa duração
Modelos família Weibull
Ajuste com covariáveis para modelos de longa duração
Modified long duration Weibull
Long duration models
Weibull family models
Adjustment with covariables for long duration models
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Modelo Weibull modificado de longa duração
title_full Modelo Weibull modificado de longa duração
title_fullStr Modelo Weibull modificado de longa duração
title_full_unstemmed Modelo Weibull modificado de longa duração
title_sort Modelo Weibull modificado de longa duração
author Oliveira, Cleyton Zanardo de
author_facet Oliveira, Cleyton Zanardo de
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/2326704083746518
dc.contributor.author.fl_str_mv Oliveira, Cleyton Zanardo de
dc.contributor.advisor1.fl_str_mv Louzada Neto, Francisco
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0994050156415890
dc.contributor.advisor-co1.fl_str_mv Perdoná, Gleici da Silva Castro
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/0745160064860746
dc.contributor.authorID.fl_str_mv 641c8ca8-4648-469d-b9f2-3d5b6ef07982
contributor_str_mv Louzada Neto, Francisco
Perdoná, Gleici da Silva Castro
dc.subject.por.fl_str_mv Weibull modificado de longa duração
Modelos de longa duração
Modelos família Weibull
Ajuste com covariáveis para modelos de longa duração
topic Weibull modificado de longa duração
Modelos de longa duração
Modelos família Weibull
Ajuste com covariáveis para modelos de longa duração
Modified long duration Weibull
Long duration models
Weibull family models
Adjustment with covariables for long duration models
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv Modified long duration Weibull
Long duration models
Weibull family models
Adjustment with covariables for long duration models
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description When a group of patients is monitored until a pre-established date for observation of the recurrence time of an event, it is possible that, at the end of the monitoring period, a parcel of such group has not yet suffered the event of interest. When that happens, even if the period is extended, there is evidence that an appropriate model for the theoretical survival function of the time until the event occurs would be one model able to bear this kind of data. This class of long duration models will be defined because the form presented by the nonparametric estimation of hazard function in this type of study indicates that the model should be flexible to allow such function to be increasing, decreasing, constant or U-shaped. In this report, we present the long duration modified Weibull model (LDMW) as a proposal to contemplate the issues in the medicine area. The LDMW model has a flexible hazard curve, which enables adjustment when the hazard is decreasing, increasing, U-shaped, unimodal, initially decreasing and posteriorly unimodal and constant. The report also particularizes models already known in the literature that contemplate long duration, such as the long duration Weibull (LDW), long duration Exponential (LDE) and short duration models, such as the modified Weibull (MW), Weibull and Exponential. The simulations showed that the odds of coverage reach the nominal probability of 95% for moderately to big sized samples, that the LDMW p model parameters estimation is costless when compared to the MW and that the selection criteria of the AIC and BIC models are not adequate to discriminate the LDMW model adjustment when compared to the LDW model adjustment for small or moderately sized samples. The LDMW model and its particular cases were adjusted into two sets of real data considering the Classic and Bayesian Inference. The first data set is about the time until the seroreversion of children born from HIV-positive mothers and the second data set is about the recurrence time of breast cancer in women.
publishDate 2011
dc.date.issued.fl_str_mv 2011-12-07
dc.date.accessioned.fl_str_mv 2017-08-09T17:23:14Z
dc.date.available.fl_str_mv 2017-08-09T17:23:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, Cleyton Zanardo de. Modelo Weibull modificado de longa duração. 2011. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2011. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8966.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/8966
identifier_str_mv OLIVEIRA, Cleyton Zanardo de. Modelo Weibull modificado de longa duração. 2011. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2011. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/8966.
url https://repositorio.ufscar.br/handle/20.500.14289/8966
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv d0f3b31a-38c4-4c28-aa5b-837ad377108e
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística - PPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/2833fbcc-0874-4a3f-84f2-aa7e3d1116a1/download
https://repositorio.ufscar.br/bitstreams/8c270cc2-016a-4372-860a-0fd8aea4e430/download
https://repositorio.ufscar.br/bitstreams/5a38aefc-4d8a-4143-8648-37369d077539/download
https://repositorio.ufscar.br/bitstreams/15bf6603-30dc-4120-8c4a-d5c5abcd5dad/download
bitstream.checksum.fl_str_mv 90de19ac8dc5ae4c2ad7e286ab945d9b
ae0398b6f8b235e40ad82cba6c50031d
6604138cc3c0745d6fa1d8f7ec2bf2fa
c4c8274f8582910e3779fed9eb12bb94
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688916040548352