Existence and multiplicity of solutions for problems involving the Dirac operator
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/11856 |
Resumo: | In this thesis, we study equations that involving the Dirac operator and which have the form $-i \alpha \cdot \nabla u + a \beta u + M(x)u = F_{u}(x,u), em \mathbb{R}^{3},$ where $\alpha = (\alpha_1, \alpha_2, \alpha_3),$ with $\alpha_{j}$ and $\beta$ are complex matrices 4x4, j = 1, 2, 3 and a>0.Using variational methods and elements from critical point theory for strongly indefinite problems we obtain existence and multiplicity results of solutions $u:R^{3} \rightarrow C^{4}$ under different sets of hypothesis about the potential M and the nonlinearity F: Firstly, we consider a problem with nonperiodic potential and concave-convex type nonlinearity, nonperiodic, which contain weight functions that can present signal change. Next, using the generalized Nehari manifold, we study problems in which nonlinearity satisfies weak monotonicity conditions and may relate to the potential function. Among such problems,we consider a periodic case and, due to the assumptions, in order to obtain the multiplicity results we use the Clarke's subdifferential and Krasnoselskii genus. Finally, we approach a problem with nonlinearity asymptotically linear at infinity and matrix potential. In this case, the potential is described by a sum of a non-positive suitable matrix potential and a diagonal matrix whose elements are function in some $L^{\sigma}, \sigma >1,$ which can change signal. |
| id |
SCAR_110ea6ab316f207a0995263dcf5348a5 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/11856 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Somavilla, FernandaPaiva, Francisco Odair Vieira dehttp://lattes.cnpq.br/2889322093175193Miyagaki, Olimpio Hiroshihttp://lattes.cnpq.br/2646698407526867http://lattes.cnpq.br/02804511376942991aa074c2-fad9-4544-bc58-10b759417d312019-09-18T18:37:56Z2019-09-18T18:37:56Z2019-07-30SOMAVILLA, Fernanda. Existence and multiplicity of solutions for problems involving the Dirac operator. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11856.https://repositorio.ufscar.br/handle/20.500.14289/11856In this thesis, we study equations that involving the Dirac operator and which have the form $-i \alpha \cdot \nabla u + a \beta u + M(x)u = F_{u}(x,u), em \mathbb{R}^{3},$ where $\alpha = (\alpha_1, \alpha_2, \alpha_3),$ with $\alpha_{j}$ and $\beta$ are complex matrices 4x4, j = 1, 2, 3 and a>0.Using variational methods and elements from critical point theory for strongly indefinite problems we obtain existence and multiplicity results of solutions $u:R^{3} \rightarrow C^{4}$ under different sets of hypothesis about the potential M and the nonlinearity F: Firstly, we consider a problem with nonperiodic potential and concave-convex type nonlinearity, nonperiodic, which contain weight functions that can present signal change. Next, using the generalized Nehari manifold, we study problems in which nonlinearity satisfies weak monotonicity conditions and may relate to the potential function. Among such problems,we consider a periodic case and, due to the assumptions, in order to obtain the multiplicity results we use the Clarke's subdifferential and Krasnoselskii genus. Finally, we approach a problem with nonlinearity asymptotically linear at infinity and matrix potential. In this case, the potential is described by a sum of a non-positive suitable matrix potential and a diagonal matrix whose elements are function in some $L^{\sigma}, \sigma >1,$ which can change signal.Nesta tese, estudamos equações que envolvem o operador de Dirac na forma $-i \alpha \cdot \nabla u + a \beta u + M(x)u = F_{u}(x,u), em \mathbb{R}^{3},$ onde $\alpha = (\alpha_1, \alpha_2, \alpha_3),$ sendo $\alpha_{j}$ e $\beta$ matrizes complexas 4x4, j = 1, 2, 3 e a>0. Utilizando métodos variacionais e elementos da teoria de pontos críticos para problemas fortemente indefinidos obtemos resultados de existência e multiplicidade de soluções $u:R^{3} \rightarrow C^{4}$ sob diferentes conjuntos de hipóteses sobre o potencial M e a não-linearidade F. Inicialmente, consideramos um problema com potencial não periódico e uma não-linearidade do tipo côncavo-convexo, não periódica, contendo funções peso que podem apresentar mudança de sinal. Em seguida, utilizando a variedade de Nehari generalizada, estudamos problemas em que a não-linearidade satisfaz condições de monotonicidade fraca e pode se relacionar com a função potencial. Dentre tais problemas, consideramos um caso periódico e, devido as hipóteses, para obter resultados de multiplicidade utilizamos o subdiferencial de Clarke e o gênero de Krasnoselskii. Finalmente, abordamos um problema com não-linearidade assintoticamente linear no infinito e potencial matricial. Neste caso, o potencial é descrito como uma soma de um potencial matricial não positivo adequado e uma matriz diagonal cujos elementos são funções em algum espaço $L^{\sigma}, \sigma >1,$ as quais podem mudar de sinal.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDirac equationExistence and multiplicity resultsLinking argumentsStrongly indefinite functionalsOperador de DiracFuncionais fortemente indefinidosCIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAISCIENCIAS EXATAS E DA TERRA::MATEMATICAExistence and multiplicity of solutions for problems involving the Dirac operatorExistência e multiplicidade de soluções para problemas envolvendo o operador de Diracinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600989bab05-2d67-47c4-ae4a-6faf42154aa5reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese - FernandaSomavilla - VersaoCompleta.pdfTese - FernandaSomavilla - VersaoCompleta.pdfVersão completa - tese de doutoradoapplication/pdf1237461https://repositorio.ufscar.br/bitstreams/a19021d3-67da-4e33-9a6e-4523e3437cd6/download71787dc3256e1478f027ec796128ce43MD51trueAnonymousREAD2020-08-01Carta - Orientador.pdfCarta - Orientador.pdfCarta-comprovante - Orientadorapplication/pdf157506https://repositorio.ufscar.br/bitstreams/e2ed37ab-0c14-410a-b687-cfd8f8d1c60c/downloadf27ed80adcd7510c38f37b73342b101aMD52falseAnonymousREAD2020-08-01CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/721bdbb2-eb77-40af-9645-336b361a2b9d/downloade39d27027a6cc9cb039ad269a5db8e34MD53falseAnonymousREAD2020-08-01TEXTTese - FernandaSomavilla - VersaoCompleta.pdf.txtTese - FernandaSomavilla - VersaoCompleta.pdf.txtExtracted texttext/plain187455https://repositorio.ufscar.br/bitstreams/5a9e949c-13a3-44a5-8b28-5acb9a101a11/download3a6aee052449dd45f128dd9f5e0a2a04MD58falseAnonymousREAD2020-08-01Carta - Orientador.pdf.txtCarta - Orientador.pdf.txtExtracted texttext/plain1156https://repositorio.ufscar.br/bitstreams/8bcded18-f74c-42e0-a8b3-fe8bc3a80ac5/download393b63d6c682d8bfbf1e4711dfdaf8bfMD510falseAnonymousREAD2020-08-01THUMBNAILTese - FernandaSomavilla - VersaoCompleta.pdf.jpgTese - FernandaSomavilla - VersaoCompleta.pdf.jpgIM Thumbnailimage/jpeg3291https://repositorio.ufscar.br/bitstreams/6dc6d75a-3203-4ca8-bf26-760fba1aefa0/downloadd46ea273732123ea9f9a85695fa18c5fMD59falseAnonymousREAD2020-08-01Carta - Orientador.pdf.jpgCarta - Orientador.pdf.jpgIM Thumbnailimage/jpeg13645https://repositorio.ufscar.br/bitstreams/ccecd109-c2b1-4d79-b250-b2157e1d3ab7/download00b8f5bb5fa62f1c8599c8b7149544c1MD511falseAnonymousREAD2020-08-0120.500.14289/118562025-02-05 19:19:35.142http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/11856https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:19:35Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.por.fl_str_mv |
Existence and multiplicity of solutions for problems involving the Dirac operator |
| dc.title.alternative.por.fl_str_mv |
Existência e multiplicidade de soluções para problemas envolvendo o operador de Dirac |
| title |
Existence and multiplicity of solutions for problems involving the Dirac operator |
| spellingShingle |
Existence and multiplicity of solutions for problems involving the Dirac operator Somavilla, Fernanda Dirac equation Existence and multiplicity results Linking arguments Strongly indefinite functionals Operador de Dirac Funcionais fortemente indefinidos CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
Existence and multiplicity of solutions for problems involving the Dirac operator |
| title_full |
Existence and multiplicity of solutions for problems involving the Dirac operator |
| title_fullStr |
Existence and multiplicity of solutions for problems involving the Dirac operator |
| title_full_unstemmed |
Existence and multiplicity of solutions for problems involving the Dirac operator |
| title_sort |
Existence and multiplicity of solutions for problems involving the Dirac operator |
| author |
Somavilla, Fernanda |
| author_facet |
Somavilla, Fernanda |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/0280451137694299 |
| dc.contributor.author.fl_str_mv |
Somavilla, Fernanda |
| dc.contributor.advisor1.fl_str_mv |
Paiva, Francisco Odair Vieira de |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2889322093175193 |
| dc.contributor.advisor-co1.fl_str_mv |
Miyagaki, Olimpio Hiroshi |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/2646698407526867 |
| dc.contributor.authorID.fl_str_mv |
1aa074c2-fad9-4544-bc58-10b759417d31 |
| contributor_str_mv |
Paiva, Francisco Odair Vieira de Miyagaki, Olimpio Hiroshi |
| dc.subject.por.fl_str_mv |
Dirac equation Existence and multiplicity results Linking arguments Strongly indefinite functionals Operador de Dirac Funcionais fortemente indefinidos |
| topic |
Dirac equation Existence and multiplicity results Linking arguments Strongly indefinite functionals Operador de Dirac Funcionais fortemente indefinidos CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
In this thesis, we study equations that involving the Dirac operator and which have the form $-i \alpha \cdot \nabla u + a \beta u + M(x)u = F_{u}(x,u), em \mathbb{R}^{3},$ where $\alpha = (\alpha_1, \alpha_2, \alpha_3),$ with $\alpha_{j}$ and $\beta$ are complex matrices 4x4, j = 1, 2, 3 and a>0.Using variational methods and elements from critical point theory for strongly indefinite problems we obtain existence and multiplicity results of solutions $u:R^{3} \rightarrow C^{4}$ under different sets of hypothesis about the potential M and the nonlinearity F: Firstly, we consider a problem with nonperiodic potential and concave-convex type nonlinearity, nonperiodic, which contain weight functions that can present signal change. Next, using the generalized Nehari manifold, we study problems in which nonlinearity satisfies weak monotonicity conditions and may relate to the potential function. Among such problems,we consider a periodic case and, due to the assumptions, in order to obtain the multiplicity results we use the Clarke's subdifferential and Krasnoselskii genus. Finally, we approach a problem with nonlinearity asymptotically linear at infinity and matrix potential. In this case, the potential is described by a sum of a non-positive suitable matrix potential and a diagonal matrix whose elements are function in some $L^{\sigma}, \sigma >1,$ which can change signal. |
| publishDate |
2019 |
| dc.date.accessioned.fl_str_mv |
2019-09-18T18:37:56Z |
| dc.date.available.fl_str_mv |
2019-09-18T18:37:56Z |
| dc.date.issued.fl_str_mv |
2019-07-30 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SOMAVILLA, Fernanda. Existence and multiplicity of solutions for problems involving the Dirac operator. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11856. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/11856 |
| identifier_str_mv |
SOMAVILLA, Fernanda. Existence and multiplicity of solutions for problems involving the Dirac operator. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11856. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/11856 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.confidence.fl_str_mv |
600 |
| dc.relation.authority.fl_str_mv |
989bab05-2d67-47c4-ae4a-6faf42154aa5 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/a19021d3-67da-4e33-9a6e-4523e3437cd6/download https://repositorio.ufscar.br/bitstreams/e2ed37ab-0c14-410a-b687-cfd8f8d1c60c/download https://repositorio.ufscar.br/bitstreams/721bdbb2-eb77-40af-9645-336b361a2b9d/download https://repositorio.ufscar.br/bitstreams/5a9e949c-13a3-44a5-8b28-5acb9a101a11/download https://repositorio.ufscar.br/bitstreams/8bcded18-f74c-42e0-a8b3-fe8bc3a80ac5/download https://repositorio.ufscar.br/bitstreams/6dc6d75a-3203-4ca8-bf26-760fba1aefa0/download https://repositorio.ufscar.br/bitstreams/ccecd109-c2b1-4d79-b250-b2157e1d3ab7/download |
| bitstream.checksum.fl_str_mv |
71787dc3256e1478f027ec796128ce43 f27ed80adcd7510c38f37b73342b101a e39d27027a6cc9cb039ad269a5db8e34 3a6aee052449dd45f128dd9f5e0a2a04 393b63d6c682d8bfbf1e4711dfdaf8bf d46ea273732123ea9f9a85695fa18c5f 00b8f5bb5fa62f1c8599c8b7149544c1 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688803004055552 |