Existence and multiplicity of solutions for problems involving the Dirac operator

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Somavilla, Fernanda
Orientador(a): Paiva, Francisco Odair Vieira de lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/11856
Resumo: In this thesis, we study equations that involving the Dirac operator and which have the form $-i \alpha \cdot \nabla u + a \beta u + M(x)u = F_{u}(x,u), em \mathbb{R}^{3},$ where $\alpha = (\alpha_1, \alpha_2, \alpha_3),$ with $\alpha_{j}$ and $\beta$ are complex matrices 4x4, j = 1, 2, 3 and a>0.Using variational methods and elements from critical point theory for strongly indefinite problems we obtain existence and multiplicity results of solutions $u:R^{3} \rightarrow C^{4}$ under different sets of hypothesis about the potential M and the nonlinearity F: Firstly, we consider a problem with nonperiodic potential and concave-convex type nonlinearity, nonperiodic, which contain weight functions that can present signal change. Next, using the generalized Nehari manifold, we study problems in which nonlinearity satisfies weak monotonicity conditions and may relate to the potential function. Among such problems,we consider a periodic case and, due to the assumptions, in order to obtain the multiplicity results we use the Clarke's subdifferential and Krasnoselskii genus. Finally, we approach a problem with nonlinearity asymptotically linear at infinity and matrix potential. In this case, the potential is described by a sum of a non-positive suitable matrix potential and a diagonal matrix whose elements are function in some $L^{\sigma}, \sigma >1,$ which can change signal.
id SCAR_110ea6ab316f207a0995263dcf5348a5
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/11856
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Somavilla, FernandaPaiva, Francisco Odair Vieira dehttp://lattes.cnpq.br/2889322093175193Miyagaki, Olimpio Hiroshihttp://lattes.cnpq.br/2646698407526867http://lattes.cnpq.br/02804511376942991aa074c2-fad9-4544-bc58-10b759417d312019-09-18T18:37:56Z2019-09-18T18:37:56Z2019-07-30SOMAVILLA, Fernanda. Existence and multiplicity of solutions for problems involving the Dirac operator. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11856.https://repositorio.ufscar.br/handle/20.500.14289/11856In this thesis, we study equations that involving the Dirac operator and which have the form $-i \alpha \cdot \nabla u + a \beta u + M(x)u = F_{u}(x,u), em \mathbb{R}^{3},$ where $\alpha = (\alpha_1, \alpha_2, \alpha_3),$ with $\alpha_{j}$ and $\beta$ are complex matrices 4x4, j = 1, 2, 3 and a>0.Using variational methods and elements from critical point theory for strongly indefinite problems we obtain existence and multiplicity results of solutions $u:R^{3} \rightarrow C^{4}$ under different sets of hypothesis about the potential M and the nonlinearity F: Firstly, we consider a problem with nonperiodic potential and concave-convex type nonlinearity, nonperiodic, which contain weight functions that can present signal change. Next, using the generalized Nehari manifold, we study problems in which nonlinearity satisfies weak monotonicity conditions and may relate to the potential function. Among such problems,we consider a periodic case and, due to the assumptions, in order to obtain the multiplicity results we use the Clarke's subdifferential and Krasnoselskii genus. Finally, we approach a problem with nonlinearity asymptotically linear at infinity and matrix potential. In this case, the potential is described by a sum of a non-positive suitable matrix potential and a diagonal matrix whose elements are function in some $L^{\sigma}, \sigma >1,$ which can change signal.Nesta tese, estudamos equações que envolvem o operador de Dirac na forma $-i \alpha \cdot \nabla u + a \beta u + M(x)u = F_{u}(x,u), em \mathbb{R}^{3},$ onde $\alpha = (\alpha_1, \alpha_2, \alpha_3),$ sendo $\alpha_{j}$ e $\beta$ matrizes complexas 4x4, j = 1, 2, 3 e a>0. Utilizando métodos variacionais e elementos da teoria de pontos críticos para problemas fortemente indefinidos obtemos resultados de existência e multiplicidade de soluções $u:R^{3} \rightarrow C^{4}$ sob diferentes conjuntos de hipóteses sobre o potencial M e a não-linearidade F. Inicialmente, consideramos um problema com potencial não periódico e uma não-linearidade do tipo côncavo-convexo, não periódica, contendo funções peso que podem apresentar mudança de sinal. Em seguida, utilizando a variedade de Nehari generalizada, estudamos problemas em que a não-linearidade satisfaz condições de monotonicidade fraca e pode se relacionar com a função potencial. Dentre tais problemas, consideramos um caso periódico e, devido as hipóteses, para obter resultados de multiplicidade utilizamos o subdiferencial de Clarke e o gênero de Krasnoselskii. Finalmente, abordamos um problema com não-linearidade assintoticamente linear no infinito e potencial matricial. Neste caso, o potencial é descrito como uma soma de um potencial matricial não positivo adequado e uma matriz diagonal cujos elementos são funções em algum espaço $L^{\sigma}, \sigma >1,$ as quais podem mudar de sinal.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDirac equationExistence and multiplicity resultsLinking argumentsStrongly indefinite functionalsOperador de DiracFuncionais fortemente indefinidosCIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAISCIENCIAS EXATAS E DA TERRA::MATEMATICAExistence and multiplicity of solutions for problems involving the Dirac operatorExistência e multiplicidade de soluções para problemas envolvendo o operador de Diracinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600989bab05-2d67-47c4-ae4a-6faf42154aa5reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTese - FernandaSomavilla - VersaoCompleta.pdfTese - FernandaSomavilla - VersaoCompleta.pdfVersão completa - tese de doutoradoapplication/pdf1237461https://repositorio.ufscar.br/bitstreams/a19021d3-67da-4e33-9a6e-4523e3437cd6/download71787dc3256e1478f027ec796128ce43MD51trueAnonymousREAD2020-08-01Carta - Orientador.pdfCarta - Orientador.pdfCarta-comprovante - Orientadorapplication/pdf157506https://repositorio.ufscar.br/bitstreams/e2ed37ab-0c14-410a-b687-cfd8f8d1c60c/downloadf27ed80adcd7510c38f37b73342b101aMD52falseAnonymousREAD2020-08-01CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/721bdbb2-eb77-40af-9645-336b361a2b9d/downloade39d27027a6cc9cb039ad269a5db8e34MD53falseAnonymousREAD2020-08-01TEXTTese - FernandaSomavilla - VersaoCompleta.pdf.txtTese - FernandaSomavilla - VersaoCompleta.pdf.txtExtracted texttext/plain187455https://repositorio.ufscar.br/bitstreams/5a9e949c-13a3-44a5-8b28-5acb9a101a11/download3a6aee052449dd45f128dd9f5e0a2a04MD58falseAnonymousREAD2020-08-01Carta - Orientador.pdf.txtCarta - Orientador.pdf.txtExtracted texttext/plain1156https://repositorio.ufscar.br/bitstreams/8bcded18-f74c-42e0-a8b3-fe8bc3a80ac5/download393b63d6c682d8bfbf1e4711dfdaf8bfMD510falseAnonymousREAD2020-08-01THUMBNAILTese - FernandaSomavilla - VersaoCompleta.pdf.jpgTese - FernandaSomavilla - VersaoCompleta.pdf.jpgIM Thumbnailimage/jpeg3291https://repositorio.ufscar.br/bitstreams/6dc6d75a-3203-4ca8-bf26-760fba1aefa0/downloadd46ea273732123ea9f9a85695fa18c5fMD59falseAnonymousREAD2020-08-01Carta - Orientador.pdf.jpgCarta - Orientador.pdf.jpgIM Thumbnailimage/jpeg13645https://repositorio.ufscar.br/bitstreams/ccecd109-c2b1-4d79-b250-b2157e1d3ab7/download00b8f5bb5fa62f1c8599c8b7149544c1MD511falseAnonymousREAD2020-08-0120.500.14289/118562025-02-05 19:19:35.142http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/11856https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:19:35Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Existence and multiplicity of solutions for problems involving the Dirac operator
dc.title.alternative.por.fl_str_mv Existência e multiplicidade de soluções para problemas envolvendo o operador de Dirac
title Existence and multiplicity of solutions for problems involving the Dirac operator
spellingShingle Existence and multiplicity of solutions for problems involving the Dirac operator
Somavilla, Fernanda
Dirac equation
Existence and multiplicity results
Linking arguments
Strongly indefinite functionals
Operador de Dirac
Funcionais fortemente indefinidos
CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Existence and multiplicity of solutions for problems involving the Dirac operator
title_full Existence and multiplicity of solutions for problems involving the Dirac operator
title_fullStr Existence and multiplicity of solutions for problems involving the Dirac operator
title_full_unstemmed Existence and multiplicity of solutions for problems involving the Dirac operator
title_sort Existence and multiplicity of solutions for problems involving the Dirac operator
author Somavilla, Fernanda
author_facet Somavilla, Fernanda
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/0280451137694299
dc.contributor.author.fl_str_mv Somavilla, Fernanda
dc.contributor.advisor1.fl_str_mv Paiva, Francisco Odair Vieira de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2889322093175193
dc.contributor.advisor-co1.fl_str_mv Miyagaki, Olimpio Hiroshi
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2646698407526867
dc.contributor.authorID.fl_str_mv 1aa074c2-fad9-4544-bc58-10b759417d31
contributor_str_mv Paiva, Francisco Odair Vieira de
Miyagaki, Olimpio Hiroshi
dc.subject.por.fl_str_mv Dirac equation
Existence and multiplicity results
Linking arguments
Strongly indefinite functionals
Operador de Dirac
Funcionais fortemente indefinidos
topic Dirac equation
Existence and multiplicity results
Linking arguments
Strongly indefinite functionals
Operador de Dirac
Funcionais fortemente indefinidos
CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS
CIENCIAS EXATAS E DA TERRA::MATEMATICA
description In this thesis, we study equations that involving the Dirac operator and which have the form $-i \alpha \cdot \nabla u + a \beta u + M(x)u = F_{u}(x,u), em \mathbb{R}^{3},$ where $\alpha = (\alpha_1, \alpha_2, \alpha_3),$ with $\alpha_{j}$ and $\beta$ are complex matrices 4x4, j = 1, 2, 3 and a>0.Using variational methods and elements from critical point theory for strongly indefinite problems we obtain existence and multiplicity results of solutions $u:R^{3} \rightarrow C^{4}$ under different sets of hypothesis about the potential M and the nonlinearity F: Firstly, we consider a problem with nonperiodic potential and concave-convex type nonlinearity, nonperiodic, which contain weight functions that can present signal change. Next, using the generalized Nehari manifold, we study problems in which nonlinearity satisfies weak monotonicity conditions and may relate to the potential function. Among such problems,we consider a periodic case and, due to the assumptions, in order to obtain the multiplicity results we use the Clarke's subdifferential and Krasnoselskii genus. Finally, we approach a problem with nonlinearity asymptotically linear at infinity and matrix potential. In this case, the potential is described by a sum of a non-positive suitable matrix potential and a diagonal matrix whose elements are function in some $L^{\sigma}, \sigma >1,$ which can change signal.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-09-18T18:37:56Z
dc.date.available.fl_str_mv 2019-09-18T18:37:56Z
dc.date.issued.fl_str_mv 2019-07-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOMAVILLA, Fernanda. Existence and multiplicity of solutions for problems involving the Dirac operator. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11856.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/11856
identifier_str_mv SOMAVILLA, Fernanda. Existence and multiplicity of solutions for problems involving the Dirac operator. 2019. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11856.
url https://repositorio.ufscar.br/handle/20.500.14289/11856
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv 989bab05-2d67-47c4-ae4a-6faf42154aa5
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/a19021d3-67da-4e33-9a6e-4523e3437cd6/download
https://repositorio.ufscar.br/bitstreams/e2ed37ab-0c14-410a-b687-cfd8f8d1c60c/download
https://repositorio.ufscar.br/bitstreams/721bdbb2-eb77-40af-9645-336b361a2b9d/download
https://repositorio.ufscar.br/bitstreams/5a9e949c-13a3-44a5-8b28-5acb9a101a11/download
https://repositorio.ufscar.br/bitstreams/8bcded18-f74c-42e0-a8b3-fe8bc3a80ac5/download
https://repositorio.ufscar.br/bitstreams/6dc6d75a-3203-4ca8-bf26-760fba1aefa0/download
https://repositorio.ufscar.br/bitstreams/ccecd109-c2b1-4d79-b250-b2157e1d3ab7/download
bitstream.checksum.fl_str_mv 71787dc3256e1478f027ec796128ce43
f27ed80adcd7510c38f37b73342b101a
e39d27027a6cc9cb039ad269a5db8e34
3a6aee052449dd45f128dd9f5e0a2a04
393b63d6c682d8bfbf1e4711dfdaf8bf
d46ea273732123ea9f9a85695fa18c5f
00b8f5bb5fa62f1c8599c8b7149544c1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688803004055552